Distributed MVCC Key-Value Database:
High-Performance Transactional Storage with
Multi-Version Concurrency Control

Chiradip Mandal

systemdesignschool.com

2025
Contents
1 Executive Summary 4
2 System Overview 4
2.1 High-Level Architecture 4
2.2 MVCC Core Concepts o o v v v i ittt e 5
3 Non-Functional Requirements Framework 5
3.1 Framework Structure 5
3.2 NFR Categories and Requirements 6
4 MVCC Architecture Deep Dive 6
4.1 Multi-Version Storage Layout 6
4.2 Transaction Processing Flow L 7
5 Distributed Architecture 8
5.1 Sharding and Data Distributiono Lo 8
5.2 Regional Replication Architecture 8
6 Storage Engine Design 9
6.1 LSM-Tree with MVCC Integration 9
6.2 Version Garbage Collection 9
7 Transaction Management 10
7.1 Two-Phase Commit Protocol 10
7.2 Conflict Detection and Resolution 0. 11
8 Performance Optimization 12
8.1 Performance Metrics Framework oo 12
8.2 Caching and Read Optimization. 12

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

9 Fault Tolerance and High Availability

9.1 Failure Scenarios and Recovery
9.2 Consensus and Leader Election

10 Security and Access Control

10.1 Security Architecture
10.2 Encryption and Key Management

11 Monitoring and Observability

11.1 Comprehensive Monitoring Stack
11.2 MVCC-Specific Monitoring Metrics

12 API Design and Client Integration

12.1 Core API Operations
12.2 Client SDK Architecture

13 Performance Benchmarking

13.1 Synthetic Performance Metrics

14 Cost Optimization

14.1 Storage Tiering and Lifecycle Management

15 Disaster Recovery and Business Continuity

15.1 Recovery Objectives and Strategies
15.2 Cross-Region Backup and Recovery

16 Testing and Validation Framework

16.1 ACID Compliance Testing
16.2 Chaos Engineering and Fault Injection

17 Implementation Roadmap

17.1 Phased Development Plan
17.2 Technology Stack and Dependencies

18 Advanced Features and Future Enhancements

18.1 Machine Learning Integration
18.2 Time-Travel and Analytical Queries

19 Conclusion
A Appendix A: Complete Performance Dashboard
B Appendix B: MVCC Algorithm Pseudocode

C Appendix C: Configuration Templates

C.1 Cluster Configuration
C.2 Operational Procedures

D Appendix D: Benchmarking Suite

D.1 Performance Test Scenarios

13
13
13

14
14
15

15
15
16

16
16
17

17
17

19
19

20
20
21

22
22
23

24
24
24

25
25
25

26

26

28

30
30
32

34

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

E Appendix E: Capacity Planning Guidelines 36
E.1 Resource Sizing Calculator 36
F Final Summary 37

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

1 Executive Summary

This document presents a comprehensive design for a distributed Key-Value database with Multi-
Version Concurrency Control (MVCC), emphasizing high-performance transactional operations,
global consistency, and systematic handling of non-functional requirements through a proven frame-

work.

Key design principles:

e MVCC Architecture: Snapshot isolation with optimistic concurrency control

e Framework-Driven: Systematic approach to scalability, reliability, and operational excel-

lence

2 System Overview

2.1 High-Level Architecture

Global Distributed MVCC KV Database

Global Control Plane & Transaction Coordinator

i
Region m Region EU-West \m APAC

- ~

Shar

Shar:

-
~
= ~

Shard | Shaj Sha] Shard N | Shaj Shaj Shard

b= b=

’ MVCC Storage Engine‘ ’ MVCC Storage Engine‘ ’MVCC Storage Engin

| LSM-Tree + WAL | | LSM-Tree + WAL | | LSM-Tree + WAL |

Global Distribution: Multi-region deployment with strong consistency guarantees
ACID Compliance: Full transactional support with configurable isolation levels

High Performance: Sub-millisecond latency with millions of transactions per second

Transaction Flow:

. Global timestamp
. Shard routing

. MVCC read /write
. 2PC commit

. Version cleanup

T = W N —

Figure 1: Global Distributed MVCC Key-Value Database Architecture

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

2.2 MVCC Core Concepts

Txn Snapshot T4 Txn Snapshot T8

Snapshot Isolation:
T4 sees: A.vl, B.vl, C.vl
T8 sees: A.v2, B.v2, C.v2

Key A: i
Key B: i

Read-only snapshots
No write conflicts

Key C:

‘ ‘ ‘ ‘ ‘ \ Time

Figure 2: MVCC Version Timeline and Snapshot Isolation

3 Non-Functional Requirements Framework

3.1 Framework Structure

Performance Consistency
& Latency & ACID
NFR Framework Transaction
for MVCC KV DB Metrics & SLIs
/ \\ ACID
Testing
Scalability Reliability
& Distribution Mrabﬂi‘cy
MVCC
Monitoring

Figure 3: MVCC Database Non-Functional Requirements Framework

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

3.2 NFR Categories and Requirements

Category Requirement Target Specification
Read Latency P99 < 1ms for point reads

Performance Write Latency P99 < 5ms for single writes
Transaction Latency P99 < 10ms for distributed txns
Throughput 10M+ operations/second per region
Isolation Level Snapshot Isolation (default)

Consistency ACID Compliance Full ACID with configurable levels
Conflict Detection Optimistic with rollback
Global Consistency Linearizable reads (optional)
Horizontal Scaling Linear scaling to 1000+ nodes

Scalability Data Distribution Consistent hashing with rebalancing
Storage Capacity Petabyte scale per cluster
Geographic Regions 10+ regions with sync replication
Durability 99.9999999% (9 nines)

Reliability Availability 99.99% with regional failures
Recovery Time < 30s for node failures

Table 1: MVCC Database Non-Functional Requirements

4 MVCC Architecture Deep Dive

4.1 Multi-Version Storage Layout

Logical Key Space

Key "user:123" |v1QT10 B v2@T25 b v3@T40 p{ v4QT55 |

Key "order:456" [v1QT15 b{ v2@T30 b v3QT45 |

MemTable (Active Writes)

T

Version Metadata:
- Timestamp

- Transaction ID

- Commit Status
- Visibility Info

- Value Pointer

1
Fraeze
¥

Immutable MemTables

Flush

N2

SSTable Levels (LO, L1, L2, ...)

Figure 4: MVCC Multi-Version Storage Layout

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

4.2 Transaction Processing Flow

BEGIN TRANSACTION

Allocate Global
Timestamp

Read or Write?

Snapshot Read Write Intent
(Find Visible Version) (Create Version)

Conflict
Detection

No
2PC Commit Abort
(Make Visible) (Cleanup Intents)

COMMITTED ABORTED

Figure 5: MVCC Transaction Processing Flow

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

5 Distributed Architecture

5.1 Sharding and Data Distribution

Replication Factor: 3
Consistency: Quorum Key: "user:123"
Rea?d oo 2 Hagh: O0x2A...
Write Quorum: 2 Shard S1
Shard Migration: /Key: "order:456"
- Range splitting Hash: 0x7F...
- Load balancing — Shard 53
- Hot spot detection ey: "product:789"
Hash: 0xB2...
— Shard S6

Figure 6: Consistent Hashing and Shard Distribution

5.2 Regional Replication Architecture

Global Timestamp Oracle

7 \
/ \
/ \

Prim/ary Region

Secondary 1 Secondary 2

Async Repl o - Tl 3 Async Repl

Read-Onl Read-Onl
cacamy Read/Write Traffic cac Ly

Replication: Failover:

- Sync within region - Automatic promotion

- Async cross-region - < 30s RTO

- WAL streaming - Zero RPO (sync)

- Conflict resolution - < 5min RPO (async)

Figure 7: Multi-Region Replication with Global Timestamp Oracle

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

6 Storage Engine Design

6.1 LSM-Tree with MVCC Integration

Client Write Client Read

‘ Write-Ahead Log ‘

l ﬁ,,——"’/:???f#l{ead Coordinator‘
MemTable (Skip List) o7
F{ei@,Zé/ ,// MT\/.'CC‘én LSM:)
Immutable | Imunfutable } V1m§s anlllp'm ey
MemTable 1 || MgmTable 2 - Version chains
0 Fl 4 - Tombstone markers
N us»%;l, - GC watermarks
Level 0 SSTables/(Overlapping)
Comi?act Key Format:
Level 1 SSTables (Non-overlapping) user_ke.y + timestamp
Cont + txn_id + type
onlpact

Level 2 SSTables (Larger, Sorted)

Figure 8: LSM-Tree Storage Engine with MVCC Integration

6.2 Version Garbage Collection

GC Watermark (T7)

Key A: 8l | [
Key B: |

T T T T T T T T T T T Tlme
T1 T2 T3 T4 T5 Te6 T7 T8 T9 T10 T11

Active Transactions:
T8: Read timestamp GC Process:

T9: Write in progress Identify old versions
T10: Read timestamp Check no active readers
Mark for deletion
Async cleanup

Update watermark

GC Policy:
Keep versions > min(active txns)
Watermark = T7

SANLRER S

Figure 9: MVCC Version Garbage Collection Strategy

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

7 'Transaction Management

7.1 Two-Phase Commit Protocol

Transaction Coordinator — > Prepare

Prepared (Ack)
— Commit

Shard 2
Recovery Scenarios: Transaction States:
- Coordinator failure PENDING — PREPARING
- Participant failure PREPARING — PREPARED
- Network partition PREPARED — COMMITTED
- Partial commit PREPARED — ABORTED
Recovery Protocol: Timeout Handling;:
- Query all participants - Prepare timeout: 10s
- Determine commit/abort - Commit timeout: 30s
- Complete transaction - Auto-abort on timeout

Figure 10: Distributed Two-Phase Commit Protocol

10

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

7.2 Conflict Detection and Resolution

T1
T2

Time

Conflict Examples:

Write-Write: T1 and T2 both write A. T2 commits first — T1 aborts

Read-Write: T3 reads B=10, T4 updates B=20, T3 writes C based on stale B

Write Skew: T5 reads A=10,B=20 then writes A=30. T6 reads same values, writes B=40

MVCC Isolation Levels:

Snapshot Isolation: Prevents Write-Write conflicts only
Serializable: Prevents all three conflict types

Detection: Optimistic - all conflicts detected at commit time

Figure 11: MVCC Conflict Types: Write-Write, Read-Write, and Write Skew

11

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

8 Performance Optimization

8.1 Performance Metrics Framework

Metric Cate- | SLI Target Measurement
gory Method
Point Read | < 1ms Client-side measure-
Latency P99 ment
Range Read | < 10ms Server-side logging
P99
Single Write | < 5ms End-to-end tracing
P99
Transaction < 10ms Transaction coordinator
P99
Reads/sec 10M+ Load balancer metrics
Throughput Writes/sec 5M—+ Shard-level aggregation
Transactions/se¢ 1M+ Global coordinator stats
Active Trans- | 100K+ Transaction manager
Concurrency actions
Abort Rate < 1% Conlflict detection logs
Lock Con- | < 0.1% Lock manager metrics
tention

Table 2: Performance Metrics and Service Level Indicators

8.2 Caching and Read Optimization

Cache Hierarchy:

L1 (Client):

- 10ms TTL

- LRU eviction

- 100MB capacity

L2 (Proxy):
- Ilmin TTL

- 10GB capacity

L3 (Server):

- 10min TTL

- Version-aware

- 100GB capacity

- Consistent hashing

’ Client Application ‘
1. Chck L1
L1 Cache (Client-side)

2. L1 Miss

L2 Cache (Proxy Layer)

3. L2 Miss
L3 Cache (Server-side)
4. L3 Miss
MVCC Storage Engine ‘

Cache Invalidation:

1. Write-through

2. Version-based TTL
3. Pub/sub notifications
4. Lazy invalidation

Consistency:

- Eventual consistency
- Read-your-writes

- Monotonic reads

Figure 12: Multi-Level Caching Architecture for Read Optimization

12

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

9 Fault Tolerance and High Availability

9.1 Failure Scenarios and Recovery

Failure Type Impact Detection Recovery Strategy
Node Failure Low Heartbeat timeout (5s) | Replica promotion, traf-
fic rerouting
Shard Leader | Medium Raft leader election New leader election, re-
Failure sume operations
Network Partition | High Split-brain detection Quorum-based deci-
sions, partition healing
Transaction Coor- | Medium Health check failure Coordinator failover,
dinator Failure transaction recovery
Storage Corrup- | Medium Checksum validation Restore from healthy
tion replicas
Region Outage High Cross-region monitoring | Failover to secondary
region

Table 3: Failure Scenarios and Recovery Strategies

9.2 Consensus and Leader Election

Leader Raft States
Node A Follower:
Log Eptries \m@ o - Receive log entries
Follower Tollower - Respond to leader
Node B Node C - Start election on timeout
Candidate:
Vote Crapt----- . - Request votes ' o
Candidate [| Failed "1 Voter - Become leader if majority
Node B Node A Node C - Return to follower if fail
. Leader:
Timing Parameters - Accept client requests
Election Timeout: 150-300ms (randomized) - Replicate log entries
Heartbeat: 50ms _ Sl hesictlbesis
RPC Timeout: 100ms

Recovery Time: < 1s

Figure 13: Raft Consensus Protocol for Shard Leadership

13

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

10 Security and Access Control

10.1 Security Architecture

’ Client Application ‘

HTTPS/gRPC

‘ TLS 1.3 Encryption ‘

Decrypt
Authentication
(mTLS, JWT, API Keys) Access Control:
Authenticate - Fine-grained permissions
- Database-level ACLs
Authorization - Key-level permissions
(RBAC, ABAC) - Transaction-level limits
Rate Limiting:
Authorize - Per-user quotas
- Transaction limits
’Audit Logging‘ - Connection throttling
Log

‘ Database Layer ‘

Store

Encryption at Rest
(AES-256)

Figure 14: Comprehensive Security Architecture

14

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

10.2 Encryption and Key Management

Master Key
(Hardware Security Module)

- ~,

Data Encryption Key Encryption
Keys (DEK) Keys (KEK)

Table Keys

~
~

Log

’ Shard kq Backup Keys ‘

~
S o \
~ \
~
~

>3 ~
‘ Encrypted Data at Rest ‘

Key Rotation:

Master Key: Annual
DEK/KEK: Quarterly
Table Keys: Monthly

Process:

1. Generate new key
2. Re-encrypt data
3. Update references
4. Retire old key

Zero-downtime rotation

Figure 15: Hierarchical Key Management and Encryption

11 Monitoring and Observability

11.1 Comprehensive Monitoring Stack

MVCC Database Application Layer
|

Logs \"
Agent

| /

’ Collection & Aggregation Layer ‘

Metrics
Agent

Traces
Agent

|
Metrics DB Logs DB Traces DB
(Prometheus| (Elasticsearch) | (Jaeger)
l

Analytics, Alerting & Dashboards (Grafana)

Key Metrics:

Transaction Metrics:
- Commit rate

- Abort rate

- Latency distribution

MVCC Metrics:
- Version count
- GC efficiency
- Storage overhead

System Metrics:

- CPU, Memory, 1/0O
- Network latency

- Disk utilization

Figure 16: Three-Pillar Observability Architecture

15

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

11.2 MVCC-Specific Monitoring Metrics

100%

Metric Formula Target Description

Version Chain % < 10 Average versions per key
Length

GC Efficiency % x | > 80% Garbage collection ef-

fectiveness

Transaction Conflict

total transactions

aborted transactions x| < 1%

Percentage of conflict-

snapshot timestamp

Rate 100% ing transactions

MVCC Storage Ver;ﬁi;ﬁt;iaggslzex < 20% Storage overhead from
Overhead 100% versioning

Read Snapshot Age | current time — | < 100ms Age of read snapshots

bytes written by user

Write Amplification | 2yteswritien o storagel g,

LSM-tree write amplifi-
cation

Table 4: MVCC-Specific Performance Metrics

12 API Design and Client Integration

12.1 Core API Operations

Listing 1: MVCC Key-Value Database API

Basic KV Operations

GET /api/vl/kv/{key}

GET Japi/vl/kv/{key}?version={ts}
PUT Japi/vl/kv/{key}

DELETE /api/vl/kv/{key}

Range Operations
GET /api/vl/kv?start={key}&end={key}
GET Japi/vl/kv?prefix={prefix}

Transaction Operations

POST /api/vl/txn/begin

GET Japi/vl/txn/{txn_id}/kv/{key}
pUT Japi/vl/txn/{txn_id}/kv/{key}
POST /api/vl/txn/{txn id}/commit
POST /api/vl/txn/{txn id}/abort

Batch Operations
POST /api/vl/batch
GET /api/vl/batch/{batch id}/status

Admin Operations
GET /api/vl/admin/stats
GET /api/vl/admin/health

16

Get latest version

Get specific version

Put with auto—timestamp
Soft delete (tombstone)

Range scan
Prefiz scan

RINES

Begin transaction
Transactional read
Transactional write
Commit transaction
Abort transaction

RN NN NN

Atomic batch operations
Batch status

ISR

Database statistics
Health check

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

POST /api/vl/admin/compact # Manual compaction
GET /api/vl/admin/metrics # Prometheus metrics

Time—travel Queries

GET /api/vl/kv/{key}/history # Version history
GET /api/vl/kv?snapshot={timestamp } # Point—in—time query

12.2 Client SDK Architecture

‘ Client Application ‘

SDK Features:

MVCC DB SDK - Automatic retry
- Connection pooling

- Load balancing

- Circuit breaker

- Caching layer

- Metrics collection

’ Transaction Manager %

Transaction Support:

- Begin/Commit/Abort
’ Connection Pool - Isolation levels

- Conflict handling

- Automatic retries

Protocol Layer
(eRPC/HTTP)

Database Cluster

Figure 17: Client SDK Architecture with Transaction Support

13 Performance Benchmarking

13.1 Synthetic Performance Metrics

Listing 2: Performance Benchmark Results

{

"benchmark run": "mvcc—kv—db—2025—08—-05",

"cluster config": {
"nodes": 9,
"regions": 3,
"replication factor": 3,

17

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

"total cores": 288,
"total memory gb": 2304
b
"workload results": {

"point reads": {
"operations per second": 12500000,
"avg latency ms": 0.8,

"p95 latency ms": 1.2,
"p99 latency ms": 2.1,
"p999 latency ms": 4.8

I

"point writes": {
"operations per second": 6800000,
"avg latency ms": 2.1,

"p95 latency ms": 3.5,
"p99 latency ms": 5.2,
"p999 latency ms": 12.1

b

"range scans": {
"operations per second": 450000,
"avg latency ms": 8.3,

"p95 latency ms": 15.2,
"p99 latency ms": 28.7,
"avg keys per scan": 100

}s

"transactions": {
"operations per second": 1200000,
"avg latency ms": 4.2,

"p95 latency ms": 8.1,
"p99 latency ms": 15.3,

"abort rate percent": 0.8,
"avg operations per txn": 3.2
¥
1
"mvece metries": {
"avg version chain length": 4.2,
"gc efficiency percent": 87.3,
"storage overhead percent": 18.5,

"avg snapshot age ms": 45.2

}7

"resource utilization": {
"cpu_ utilization percent": 78.5,
"memory utilization percent": 82.1,
"disk io utilization percent": 65.3,
"network utilization percent": 45.8

18

High-Performance Transactional Storage System

14 Cost Optimization

14.1 Storage Tiering and Lifecycle Management

Hot Tier (SSD) Recent versions, < 1 day, $2.00/GB/month
1 day]|

Warm Tier (NVMe) Active versions, 1-30 days, $0.80/GB/month
30 days |

Cold Tier (HDD) Old versions, 30-365 days, $0.20/GB/month
365 days |

Archive Tier Historical data, > 1 year, $0.05/GB/month

Lifecycle Policies
Hot Data: Cold Data:

- Latest versions
- Active transactions
- Frequent access

Warm Data:
- Recent versions
- Occasional access

- Point-in-time queries

- Historical versions
- Compliance data
- Rare access

Archive:

- Long-term retention
- Legal holds

- Backup data

Figure 18: Multi-Tier Storage with Automated Lifecycle Management

19

Distributed MVCC Key-Value Database

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

15

15.1 Recovery Objectives and Strategies

Disaster Recovery and Business Continuity

Disaster Sce- | RTO RPO Recovery Strategy

nario

Single Node Fail- | < 10s 0 Raft failover, automatic

ure replica promotion

Shard Failure < 30s 0 Cross-replica healing, rebal-
ancing

A7 Outage < 2min < 10s Traffic routing to healthy AZs

Regional Failure < bmin < 30s Cross-region failover with
timestamp sync

Transaction Coor- | < 30s 0 Coordinator failover, in-flight

dinator Failure recovery

Data Corruption | < 10min < 1min Restore from replicas, consis-
tency repair

Complete Data | < 15min < 2min Geographic failover, DNS up-

Center Loss

dates

Table 5: Disaster Recovery Time and Point Objectives

20

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

15.2 Cross-Region Backup and Recovery

Recovery Metrics:
Backup Frequency: 15min
Retention Period: 7 years Failover Process:
Cross-region Sync: < lmin 1. Detect primary failure
Recovery Testing: Weekly 2. Promote DR to primary
3. Update DNS /routing
Avallablhty SLA: 9999% 4. Resume Operations
Data Durablhty 99999999999% 5. Sync when primary recovers
Primary Region . DR Region
N

Active Cluster m Standby Cluster

Read/Write Traffic Read-only Traffic
Real-time Replication Async Replication

Backup Storage

Point-in-time Backups
Long-term Retention
Cross-region Copies

Figure 19: Cross-Region Disaster Recovery Architecture

21

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

16 Testing and Validation Framework

16.1 ACID Compliance Testing

Atomicity Tests: Consistency Tests:
- Partial commit failures - Constraint violations
- Network partitions - Referential integrity
- Node crashes - Cross-shard consistency
- Transaction rollbacks - Causal ordering
Atomicity Consistency
Testing Testing
Isolation Durability
Testing Testing
Isolation Tests: Durability Tests:
- Concurrent transactions - WAL recovery
- Read phenomena - Power failures
- Snapshot isolation - Disk corruption
- Serialization conflicts - Backup/restore

Figure 20: Comprehensive ACID Compliance Testing Framework

22

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

16.2 Chaos Engineering and Fault Injection

Normal System Operation

Partitions Failures Failures

7 / N\
Network Node Disk\

Load
Spikes

System Response and Recovery

Chaos Measurements:
- Availability during faults
- Data consistency preservation
- Recovery time
- Transaction success rate
- Performance degradation

Chaos Schedule:

Daily:
- Random node restarts
- Network latency injection

Weekly:
- AZ failures
- Database splits

Monthly:
- Region failures
- Data corruption

Quarterly:
- Full DR tests

Figure 21: Chaos Engineering for Resilience Testing

23

High-Performance Transactional Storage System

Distributed MVCC Key-Value Database

17 Implementation Roadmap

17.1 Phased Development Plan

Phase Duration Key Features Success Crite-
ria
Phase 1 8 months Single-region MVCC, basic | 99.9% availability,
transactions, LSM storage | 1M ops/sec
Phase 2 6 months Multi-shard, Raft consen- | 99.95% availabil-
sus, 2PC transactions ity, horizontal
scaling
Phase 3 8 months Multi-region, global times- | 99.99% availabil-
tamps, cross-region repli- | ity, global deploy-
cation ment
Phase 4 4 months Advanced features, | 99.999% availabil-
caching, performance | ity, 10M ops/sec
optimization
Phase 5 6 months Security hardening, com- | SOC2, HIPAA
pliance, enterprise features | compliance
Phase 6 Ongoing ML-driven optimization, | Continuous im-
new features, scaling provement

Table 6: Implementation Roadmap with Milestones

17.2 Technology Stack and Dependencies

Component Technology Choice Rationale
Programming Rust / Go Memory safety, performance,
Language concurrency

Custom LSM-Tree Optimized for MVCC, write-
heavy workloads

Proven, simple, strong consis-

Storage Engine

Consensus Algo- | Raft

rithm tency

Serialization Protocol Buffers Efficient, versioned, cross-
language

Networking gRPC / HTTP/2 High performance, streaming,
multiplexing

Monitoring Prometheus + Grafana | Open source, scalable, rich
ecosystem

Logging Structured JSON logs Searchable, analyzable, stan-
dardized

Testing Property-based testing | Comprehensive edge case cov-
erage

Table 7: Technology Stack Selection

24

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

18 Advanced Features and Future Enhancements

18.1 Machine Learning Integration

Workload Auto-tuning Anomaly
Prediction Engine Detection

N e

MVCC Database Core

7 N

Smart Predictive Cache
Sharding GC Optimization
ML Capabilities
Workload Prediction Auto-tuning Anomaly Detection
- Traffic forecasting - Parameter optimiza- - Performance issues
tion
- Resource planning - Performance tuning - Security threats
- Capacity scaling - Cost optimization - Data corruption

Figure 22: Machine Learning Enhanced Database Operations

18.2 Time-Travel and Analytical Queries

Point-in-time Time Range Diff Query
Query @Q T4 Query T6-T8| 1 T2 vs T10
oot @ @ W)
-7 o P v
: : : : 1 Time
T2 T4 T6 T8 T10

Time-Travel Analytics:

- Historical trend analysis
- Data lineage tracking
- Change impact analysis
- Audit trail queries
- Compliance reporting
- A/B testing analysis

Figure 23: Time-Travel Queries and Historical Analytics

25

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

19 Conclusion

This comprehensive distributed MVCC Key-Value database design provides a robust foundation
for building high-performance, globally consistent transactional storage systems. The architecture
emphasizes:

e MVCC Excellence: Sophisticated multi-version concurrency control with snapshot isolation
and optimistic conflict resolution

e Global Scale: Multi-region deployment with strong consistency guarantees and sub-millisecond
latencies

e ACID Compliance: Full transactional support with configurable isolation levels and com-
prehensive testing frameworks

e Operational Excellence: Systematic approach to monitoring, fault tolerance, and auto-
mated recovery

The framework-driven approach ensures that non-functional requirements are addressed sys-
tematically, enabling the system to scale from startup to enterprise deployment while maintaining
performance, reliability, and operational simplicity.

A Appendix A: Complete Performance Dashboard

Listing 3: Real-time MVCC Database Metrics Dashboard

{
"dashboard": "MVCOC_KV_Database_Health",
"timestamp": "2025-08-05T14:30:00Z",
"global metrics": {
"total operations per second": 15200000,
"global availability": 99.999,
"cross region latency p99 ms": 12.4,
"total storage tb": 247.8,
"active regions": 5,
"healthy shards": 2847,
"transaction success rate": 99.2
}s
"mvce specific _metries": {
"avg version chain length": 3.8,
"gc efficiency percent": 89.2,
"storage overhead percent": 16.7,
"active transactions": 87430,
"avg transaction latency ms": 3.2
"conflict rate percent": 0.6
}s
"regional breakdown": {
"us—east—1": {
"operations per second": 5800000,

26

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

"avg latency ms": 0.9,

"transaction throughput": 425000,
"shard count": 960,

"storage utilization percent": 78.3
Iz
"eu—west—1": {
"operations per second": 4200000,
"avg latency ms": 1.1,

"transaction throughput": 312000,
"shard count": 720,
"storage wutilization percent": 81.7
}s
"ap—southeast—1": {
"operations per second": 3600000,
"avg latency ms": 1.3,
"transaction throughput": 268000,
"shard count": 640,
"storage utilization percent": 74.9

}
}s
"sla compliance": {
"availability slo": {
"target": 99.99,
"actual": 99.999,
"status": "exceeding"
}s
"latency slo": {
"target p99 ms": 10,
"actual p99 ms": 5.8,
"status": "meeting"

}

"

)

urability slo": {
"target": 99.9999999,
"actual": 99.9999999,
"status": "meeting"

}s

"consistency slo": {

"target conflict rate": 1.0
"actual conflict rate": 0.6
"status": "exceeding"

’

)

}

}s

"storage engine metrics": {
"lsm tree levels": 6,
"compaction rate mb_ per sec": 2847.3,
"write amplification factor": 2.4,
"read amplification factor": 1.8,
"memtable count": 432,

27

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

"sstable count": 18940

}
}

B Appendix B: MVCC Algorithm Pseudocode

Listing 4: Core MVCC Transaction Processing Algorithm

// Transaction Begin

function begin transaction ():
txn_id = generate unique id ()
start timestamp = global timestamp oracle.get timestamp ()
return Transaction{id: txn id, start ts: start timestamp ,

read set: {}, write set: {}, status: ACTIVE}

// MVCOC Read Operation
function mvcc read(txn, key):
latest visible version = null
for version in key.version chain:
if version.timestamp <= txn.start timestamp

and version.status — COMMITTED:

if latest visible version = null
or version.timestamp > latest visible version.timestamp:
latest visible version = version

if latest visible version:
txn.read set.add(key, latest visible version.timestamp)
return latest visible version.value

else:
return null

/) MVOC Write Operation

function mvce write(txn, key, value):

write timestamp = global timestamp oracle.get timestamp ()
intent = Writelntent{
key: key,

value: value,
txn_id: txn.id,
timestamp: write timestamp,
status: PENDING
}
txn.write set.add(key, intent)
key.version chain.add intent(intent)

// Transaction Commit with 2PC

function commit transaction(txn):
// Phase 1: Prepare

28

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

prepare success = true
for each shard in txn.affected shards:
if not shard.prepare(txn):
prepare success = false
break

if not prepare success:
abort transaction (txn)
return ABORTED

// Phase 2: Commit
commit timestamp = global timestamp oracle.get timestamp ()
for each shard in txn.affected shards:

shard . commit (txn, commit timestamp)

// Make write intents visible
for intent in txn.write set:
intent .status = COMMITTED
intent .commit timestamp = commit timestamp

return COMMITTED

// Conflict Detection during Prepare
function detect conflicts (txn):
for (key, read timestamp) in txn.read set:
latest committed = get latest committed version (key)

if latest committed.timestamp > read timestamp:
return CONFLICT DETECTED

for intent in txn.write set:
conflicting intents = get conflicting write intents(intent.key, txn.id)
if conflicting intents.any(i => i.timestamp < intent.timestamp):
return CONFLICT DETECTED

return NO_CONFLICT

// Garbage Collection
function garbage collect ():
min_active timestamp = get min active transaction timestamp ()
for each key in database:
old versions = key.version chain. filter (
v => v.timestamp < min_ active timestamp and v.status = COMMITTED
)

// Keep at least one version for each key
if old versions.length > 1:
versions to_ delete = old versions|0:—1] // Keep latest old version
for version in versions to delete:
key.version chain.remove(version)

29

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

storage.delete (version)

// Read Snapshot Creation
function create read snapshot (timestamp):
snapshot = ReadSnapshot{
timestamp: timestamp,
visible versions: {}

}

for each key in database:

visible version = find latest committed version before(key, timestamp)
if visible version:
snapshot . visible versions|[key]| = visible version

return snapshot

// LSM-Tree Compaction with MVCC
function compact sstables(level):

input sstables = get sstables for compaction(level)
output sstable = create new sstable(level + 1)

merge iterator = create merge iterator(input_sstables)
gc watermark = get gc watermark ()

while merge iterator.has mnext():
key versions = merge iterator.next key versions()

// Filter out garbage collected versions
filtered versions = key versions. filter (
v => v.timestamp >= gc_watermark or is latest version(v)

)

for version in filtered versions:
output _sstable.write(version)

atomically replace sstables(input sstables, output sstable)

C Appendix C: Configuration Templates

C.1 Cluster Configuration

Listing 5: MVCC Database Cluster Configuration

Cluster-wide configuration

cluster:
name: "mvcc-prod-cluster"
version: "2.1.0"
regions:

30

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

- name: "us-east-1"

availability zones: ["us-east-la", "us-east-1b", "us-east-1lc"]
- name: "eu-west-1"

availability zones: ["eu-west-la", "eu-west-1b", "eu-west-1lc"]
- name: "ap-southeast-1"

availability zones: ["ap-southeast-la", "ap-southeast-1b"]

MVCC Configuration

mvcee:
isolation level: "snapshot"
gc _interval: "Hm"
gc _watermark lag: "1h"

max_version chain_ length: 100
snapshot cache size: "10GB"
conflict resolution: "first writer wins"

Storage FEngine Configuration
storage:

engine: "lsm tree"

memtable size: "128MB"

10 compaction threshold: 4
max_levels: 7

compression: "lz4"

block size: "6G4KB"

bloom filter bits per key: 10

Replication Configuration
replication :
factor: 3
consistency level: "quorum"
read quorum: 2
write quorum: 2
cross _region async: true
wal sync_interval: "10ms"

Transaction Configuration

transactions:
coordinator timeout: "30s"
prepare timeout: "10s"

max_concurrent transactions: 100000
retry policy:

max_attempts: 3

backoff multiplier: 2.0

max _backoff: "5s"

Performance Tuning

performance:
thread pool size: 64

31

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

io_thread count: 8
network buffer size: "IMB"
tcp _nodelay: true

cache size: "50GB"
readahead size: "IMB"

Monitoring Configuration

monitoring :
prometheus port: 9090
log level: "info"
metrics interval: "10s"

trace sampling rate: 0.01
slow query threshold: "100ms"

Security Configuration
security:
tls enabled: true
mutual tls: true

cert _path: "/etc/ssl/certs/server.crt"
key path: "/etc/ssl/private/server.key"
ca_path: "/etc/ssl/certs/ca.crt"
encryption at rest: true

key rotation interval: "90d"

C.2 Operational Procedures

Listing 6: Operational Runbook Commands

#1/bin/bash
MVCC Database Operational Runbook

Cluster Health Check

echo "——_ Cluster_Health_Check_——"
curl —s http://localhost:8080/api/vl/admin/health | jq
mvce—cli cluster status —verbose

Performance Monitoring

echo "——_Performance_Metrics_——"

mvcc—cli metrics —type=latency —window=1h
mvcc—cli metrics —type=throughput —window=1h
mvcc—cli metrics —type=mvcc —window=1h

Transaction Monitoring

echo "—_Transaction_Health_——"
mvcce—cli transactions —active
mvce—cli transactions —conflict —rate
mvcc—cli transactions —abort—rate

32

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

Storage Health

echo "——_Storage_Health_—="
mvcc—cli storage —utilization
mvcc—cli storage —compaction—stats
mvcc—cli storage —gc—efficiency

Manual Garbage Collection

echo "——_Triggering GC_—"
mvcc—cli admin gc —force —dry—run
mvce—cli admin gc —force

Manual Compaction

echo "——_Manual_Compaction —="
mvcc—cli admin compact —level=0 —region=us—east —1
mvcc—cli admin compact —major —region=all

Backup Operations

echo "——_Backup_Operations_ "

mvce—cli backup create —mname="backup—$(date _+%YYald-JHMAS) "
mvcc—cli backup list —region=us—east—1

mvce—cli backup verify —mname="latest"

Disaster Recovery Test

echo "—— _DR_Testing _——"

mvce—cli dr test —scenario="region—failure"

mvce—cli dr failover —from="us—east—1" —to="eu—west—1" —dry—run
Security Audit

echo "——_Security_Audit_—="

mvcc—cli security audit ——check—certs

mvcc—cli security rotate—keys —key—type="encryption"

Scale Operations

echo "——_Scaling_Operations_ "

mvcc—cli scale add—mnode —region="us—east —1" —az="us—east —1c"
mvcc—cli scale rebalance —dry—run

mvce—cli scale remove-node —node—id="node—123" —drain—timeout="10m"
Troubleshooting

echo "——_Troubleshooting ——"

mvcc—cli debug —slow—queries —1limit=10

mvcc—cli debug —transaction—conflicts —window=1h

mvcc—cli debug —mnode—connectivity —all—regions

33

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

D Appendix D: Benchmarking Suite

D.1 Performance Test Scenarios

Listing 7: Comprehensive Benchmark Test Suite

{

"benchmark suite": "mvcc—db—performance—tests",
"version": "2.0",
"test scenarios": |
{
"name": "point read heavy",
"description": "95%_reads, _5%_writes,_point_operations",
"duration": "10m",
"clients": 100,
"operations": {
"read": 95,
"write": 5

}

Y

"data size": {

"key size": 32,
"value size": 1024

}s

"expected results": {
"throughput ops sec": 10000000,
"avg latency ms": 1

"p99 latency ms": b

}

)

.0
.0

"name": "write heavy",
"description": "20%_reads, _80%_writes,_mixed_operations",
"duration": "10m",
"clients": 200,
"operations": {
"read": 20,
"write": 70,
"scan": 10
}s
"expected results": {
"throughput ops sec": 5000000,
"avg latency ms": 3.0,

"p99 latency ms": 15.0

}

"name": "transaction heavy",
"description": "Complex_multi—key_transactions",
"duration": "15m",

34

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

"clients": 50,

"transaction config": {
"keys per transaction": 5,
"read write ratio": "3:2",

"cross shard probability": 0.3

}s

"expected results": {
"throughput txn sec": 100000,
"avg latency ms": 8.0,
"p99 latency ms": 30.0,
"abort rate percent": 1.0

"name": "range scan_ heavy",
"description": "Range_scans_of_varying_sizes",
"duration": "10m",
"clients": 25,
"scan config": {
"min range size": 10,
"max range size": 1000,
"avg range size": 100

}s

"expected results": {
"throughput scans sec": 10000,
"avg latency ms": 20.0,
"p99 latency ms": 100.0

}

"name": "mixed workload",
"description": "Realistic_production_workload_simulation",
"duration": "30m",
"clients": 500,
"operations": {
"point _read": 60,
"point write": 25,

"range scan": 10,
"transaction": 5

}s

"expected results": {
"throughput ops sec": 8000000,
"avg latency ms": 2.5,

"p99 latency ms": 12.0

}
}
I

"chaos tests": |

35

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

{

"name": "node failure during load",
"base scenario": "mixed workload",
"chaos config": {
"failure type": "random node kill",
"failure rate": "1 per minute",
"recovery time": "30s"
}s
"success criteria: {
"availability during chaos": ">_99.9%",
"max latency spike": "<_5x_baseline",
"data consistency": "100%"

}
}s
{

"name": "network partition",
"base scenario": "transaction heavy",
"chaos config": {
"partition type": "region isolation",
"duration": "2m",
"healing time": "30s"
I
"success criteria: {
"transaction consistency": "100%",
"no split _brain": true,
"recovery time'": "<_1Im"

}
}
|
}

E Appendix E: Capacity Planning Guidelines

E.1 Resource Sizing Calculator

Workload Type | CPU (cores) Memory (GB) | Storage (TB)
Light (= 10K op- | 8-16 32-64 1-5

s/sec)

Medium (10K- | 16-32 64-128 5-20

100K ops/sec)

Heavy (100K-1M | 32-64 128-256 20-100
ops/sec)

Extreme (> 1M | 64-128 256-512 100-500
ops/sec)

Table 8: Resource Sizing Guidelines per Node

36

High-Performance Transactional Storage System Distributed MVCC Key-Value Database

Scaling Dimension Trigger Point Action
CPU Utilization > 70% sustained | Add more nodes or upgrade instance
type

Memory Utilization > 80% sustained | Increase memory or add nodes

Disk 1/0 Utilization > 80% sustained | Add SSDs or scale horizontally

Transaction Conflict | > 5% Review data model, add shards

Rate

GC Overhead > 20% of process- | Tune GC parameters, add capacity
ing time

Cross-region Latency > 100ms P99 Add regional replicas

Table 9: Auto-scaling Triggers and Actions

F Final Summary

This comprehensive MVCC Key-Value database design document provides a complete blueprint for
building enterprise-grade distributed transactional storage systems. The design covers all critical
aspects:

Core Architecture®: Multi-version concurrency control with snapshot isolation, distributed
consensus via Raft, and LSM-tree storage optimization.

Operational Excellence: Comprehensive monitoring, automated failure recovery, chaos en-
gineering validation, and systematic capacity planning.

Enterprise Features: End-to-end security, compliance frameworks, disaster recovery, and
machine learning integration for optimization.

Implementation Roadmap: Phased development approach with clear milestones, technology
stack recommendations, and detailed operational procedures.

The framework-driven methodology ensures that all non-functional requirements are system-
atically addressed, providing a solid foundation that can scale from startup to global enterprise
deployment while maintaining consistency, performance, and reliability.

37

	Executive Summary
	System Overview
	High-Level Architecture
	MVCC Core Concepts

	Non-Functional Requirements Framework
	Framework Structure
	NFR Categories and Requirements

	MVCC Architecture Deep Dive
	Multi-Version Storage Layout
	Transaction Processing Flow

	Distributed Architecture
	Sharding and Data Distribution
	Regional Replication Architecture

	Storage Engine Design
	LSM-Tree with MVCC Integration
	Version Garbage Collection

	Transaction Management
	Two-Phase Commit Protocol
	Conflict Detection and Resolution

	Performance Optimization
	Performance Metrics Framework
	Caching and Read Optimization

	Fault Tolerance and High Availability
	Failure Scenarios and Recovery
	Consensus and Leader Election

	Security and Access Control
	Security Architecture
	Encryption and Key Management

	Monitoring and Observability
	Comprehensive Monitoring Stack
	MVCC-Specific Monitoring Metrics

	API Design and Client Integration
	Core API Operations
	Client SDK Architecture

	Performance Benchmarking
	Synthetic Performance Metrics

	Cost Optimization
	Storage Tiering and Lifecycle Management

	Disaster Recovery and Business Continuity
	Recovery Objectives and Strategies
	Cross-Region Backup and Recovery

	Testing and Validation Framework
	ACID Compliance Testing
	Chaos Engineering and Fault Injection

	Implementation Roadmap
	Phased Development Plan
	Technology Stack and Dependencies

	Advanced Features and Future Enhancements
	Machine Learning Integration
	Time-Travel and Analytical Queries

	Conclusion
	Appendix A: Complete Performance Dashboard
	Appendix B: MVCC Algorithm Pseudocode
	Appendix C: Configuration Templates
	Cluster Configuration
	Operational Procedures

	Appendix D: Benchmarking Suite
	Performance Test Scenarios

	Appendix E: Capacity Planning Guidelines
	Resource Sizing Calculator

	Final Summary

