Erasure Coding in Distributed Storage Systems:
Comprehensive Reference Document

Chiradip Mandal
July 2025

Abstract

This document provides a comprehensive guide to erasure coding in distributed storage
systems. We examine the fundamental (n,k) parameters, mathematical foundations, per-
formance trade-offs, and practical applications. Crucially, we explain why erasure coding
excels for cold storage but fails for primary/hot storage due to severe performance penalties.

Contents

1 Understanding (n,k) Parameters
1.1 Core Concept o o e
1.2 Example: (6,4) Configuration
1.3 Common Configurations

2 Mathematical Foundations
2.1 Reed-Solomon Codes oo
2.2 Matrix Representation Lo oL
2.3 Finite Field Arithmetic.

3 The Performance Problem
3.1 Why NOT Primary Storage?,
3.1.1 Read Performance Penalty
3.1.2 Write Amplification Nightmare
3.1.3 Comprehensive Performance Impact
3.2 Real-World Impact Examples
3.2.1 Database Query Scenario
3.2.2 High-Traffic Application

4 Where Erasure Coding Excels
4.1 The Tiered Storage Solution
4.2 Object Storage Success Stories
4.2.1 Amazon S3
4.2.2 Google Cloud Storage
4.3 Database Applications
4.3.1 Apache Cassandra
4.3.2 Hadoop HDFS-EC

5 Implementation Considerations
5.1 Hardware Acceleration
5.2 Network Topology Optimization
5.3 Configuration Selection Guidelines L.

Erasure Coding in Distributed Storage Systems

6 Advanced Techniques
6.1 Locally Repairable Codes (LRC)
6.2 Adaptive Erasure Coding

7 Economic Analysis
7.1 Total Cost of Ownership
7.2 Break-Even Analysis

8 Implementation Checklist
8.1 Phase 1: Planning
8.2 Phase 2: Implementation L L
8.3 Phase 3: Operations L

9 Future Directions
9.1 Emerging Research Areas

10 Decision Framework
10.1 Quick Decision Matrix

11 Conclusion
11.1 Key Takeaways o . oo it e e e
11.2 Strategic Recommendations oL
11.3 The Bottom Line

10
10
10
11

11
11

12
12

Erasure Coding in Distributed Storage Systems

1 Understanding (n,k) Parameters

1.1 Core Concept

An (n,k) erasure code divides original data into:
e k data chunks - pieces of the original file
e (n-k) parity chunks - redundancy for fault tolerance
e n total chunks stored across the system

Golden Rule: Any k chunks out of n total can reconstruct the original data.

1.2 Example: (6,4) Configuration
Consider a 1GB file with (6,4) erasure coding:

Original File (1 GB)

D
250MB 250MB 250MB 250MB 250MB 250MB

Jomputed from data chunks

/ l it into chunks .
k=4 Data Chunks (n-k)=2 Parity

- —] F—f——> -} - -

Figure 1: (6,4) Erasure coding structure

Key Properties:
e Storage Overhead: n/k = 6/4 = 1.5x (vs 3x for replication)
e Fault Tolerance: Can lose any 2 chunks and still recover

e Storage Efficiency: k/n = 4/6 = 67%

1.3 Common Configurations

Table 1: Erasure coding configurations in production systems

Config Data Parity Overhead Faults Used By

(3,2) 2 1 1.5x% 1 Simple systems
(6,4) 4 2 1.5x% 2 HDFS, Cassandra
(9,6) 6 3 1.5% 3 Facebook

(10,6) 6 4 1.67x 4 Google Cloud
(12,8) 8 4 1.5% 4 Amazon S3 IA
(14,10) 10 4 1.4x 4 S3 Glacier

3% Replication 1 2 copies 3.0x 2 Traditional

Erasure Coding in Distributed Storage Systems

2 Mathematical Foundations

2.1 Reed-Solomon Codes

Reed-Solomon codes represent data as polynomials over finite fields GF(2"):

f(x) =do+ dix + dox® + ... + djy_q2 1

Where d; are the data chunks.
Encoding Process:

1. Create polynomial f(z) with data chunks as coefficients
2. Evaluate at n distinct points: ¢; = f(a;)

3. First k evaluations are data chunks (systematic encoding)
4. Remaining (n — k) evaluations are parity chunks

Decoding Process:

1. Given any k chunks, reconstruct polynomial using Lagrange interpolation

2. Extract original data chunks from polynomial coefficients

F@¥ () = do + dya + doa® + dsa®

Figure 2: Reed-Solomon polynomial evaluation

2.2 Matrix Representation

Encoding can be expressed as matrix multiplication:

c=d-G
Where G is the generator matrix:
o 0
1 0
G = 0 1
1 o - 04],2_1
1 onoy T

Erasure Coding in Distributed Storage Systems

2.3 Finite Field Arithmetic
Operations in GF(2%):
e Addition: XOR operation (a @ b)
e Multiplication: Polynomial multiplication modulo irreducible polynomial

e Division: Multiplication by multiplicative inverse

3 The Performance Problem

3.1 Why NOT Primary Storage?

Critical Insight: Erasure coding trades performance for storage efficiency.

3.1.1 Read Performance Penalty

Table 2: Read operation comparison

Approach Process Latency
Replication Read 1 file from 1 node 5ms
Erasure Coding Contact k nodes + decode 25ms
Performance Impact 5X slower

Why so slow?

e Network: Must contact k nodes instead of 1
e CPU: Finite field arithmetic for decoding

e Coordination: Wait for k responses

e Memory: Buffer and process multiple chunks

Replication: ’ Request H Read 1 copy }—) 5ms

EC (6,4): Contact k=4 nodes H Decode H Done ‘ 25ms

5% Performance Penalty

Figure 3: Read latency comparison: Replication vs Erasure Coding

3.1.2 Write Amplification Nightmare

Worst Case Scenario: Updating 1 byte in an erasure-coded file

Erasure Coding in Distributed Storage Systems

Example: (6,4) EC, change 1 byte in chunk D,
Operations Required:

1. Read: All k=4 data chunks (to recalculate parity)
2. Compute: New parity chunks (CPU intensive)
3. Write: Modified data chunk + all parity chunks

Total: 4 reads + 3 writes + encoding CPU
vs Replication: 1 read + 3 writes
Result: 20x slower for small updates!

3.1.3 Comprehensive Performance Impact

Table 3: Performance comparison across operation types

Operation Replication EC (6,4) Impact
Sequential Read Sms 15ms 3% slower
Random Read 2ms 25ms 12x slower
Large Sequential Write 100ms 150ms 1.5x slower
Small Random Write 10ms 200ms 20x slower
Node Failure Recovery Instant O minutes 300x slower
CPU Usage Low High 10x more
Network Bandwidth 1x kx kx amplification

3.2 Real-World Impact Examples
3.2.1 Database Query Scenario
¢ Replication: "Get user profile #12345" — 5ms response

e Erasure Coding: Same query — 25ms response

e Impact: 5x slower for every database query!

3.2.2 High-Traffic Application

At 1000 requests/second with 5x read penalty:
e Additional delay per request: 20ms
e Total extra waiting time: 20 seconds per second!

e Result: Completely unacceptable user experience

4 Where Erasure Coding Excels

4.1 The Tiered Storage Solution

Access Pattern Rule: If data is accessed less than once per day, storage savings outweigh
performance costs.

Erasure Coding in Distributed Storage Systems

Table 4: Strategic storage tier recommendations

Tier Data Type Access Strategy Rationale
HOT Databases, Active files Daily Replication 3x Performance critical
WARM Logs, Cached data Weekly Light EC (6,4) Balanced approach
COLD Backups, Analytics Monthly Heavy EC (14,10) Storage efficiency
ARCHIVE Compliance, DR Yearly Max EC (20,16) Cost optimization
>
0
=
2
HOT Replication (3x) - Databases, Active Files &E 20 head
Access: Daily, Latency: <5ms R o7 overhea
o
o0
WARM Light EC (6,4) - Logs, Cached Data g L head
o 1.5x
Access: Weekly, Latency: 10-50ms 3 overhea
COLD Heavy EC (14,10) - Backups, Analytics L4 head
Access: Monthly, Latency: 100ms-1s A overhien
ARCHIVE Max EC (20,16) - Compliance, DR Los head
A 4) ><
Access: Yearly, Latency: 1-10s overhea

Figure 4: Strategic tiered storage architecture

4.2 Object Storage Success Stories
4.2.1 Amazon S3

e Standard: Uses replication for frequently accessed data
e Standard-TA: (12,8) erasure coding for infrequent access
e Glacier: (14,10) for long-term archival

e Deep Archive: Maximum erasure coding for lowest cost

4.2.2 Google Cloud Storage

e Standard: Replication for hot data
e Nearline: (12,8) for monthly access patterns
e Coldline: (14,10) for quarterly access

e Archive: Heavy erasure coding for yearly access

4.3 Database Applications

4.3.1 Apache Cassandra
e Hot data: Replication for real-time queries
e Historical data: (6,4) erasure coding

e Analytics tables: (10,6) for data warehouse workloads

Erasure Coding in Distributed Storage Systems

4.3.2 Hadoop HDFS-EC

e Active datasets: Traditional 3x replication
e Aging data: Automatic migration to (6,4) EC

e Archive data: (10,6) for maximum efficiency

5 Implementation Considerations

5.1 Hardware Acceleration

Modern erasure coding implementations leverage:

Table 5: Hardware acceleration performance

Technology Speedup Throughput
Software (single thread) 1x 0.1-0.5 GB/s
SIMD (AVX-512, NEON) 8-16x 1-2 GB/s
GPU (CUDA /OpenCL) 50-100% 5-15 GB/s
FPGA /ASIC 200 20-50 GB/s

Intel ISA-L Library: Production-ready implementation with optimized assembly routines,
providing 10-20x speedup over naive implementations.

5.2 Network Topology Optimization

Placement Strategies:
e Rack diversity: Distribute chunks across racks
e Datacenter placement: Geographic distribution for disasters
e Network awareness: Minimize cross-datacenter traffic

e Hierarchical domains: Server — Rack — Datacenter fault isolation

DC-East DPC-Central DPC-West

D CEast P C-Central DCE—West

R1 R2 E{l R2 | R3 E{l R2 | R3
WAN WAN

|R4‘R5‘R6‘ |R4‘R5‘R6‘

Data chiinlkse Parity chunks

Figure 5: Geographic distribution with rack-aware placement

5.3 Configuration Selection Guidelines
6 Advanced Techniques
6.1 Locally Repairable Codes (LRC)

Problem: Traditional RS codes require reading k chunks to repair any single failure.

Erasure Coding in Distributed Storage Systems

Table 6: Configuration selection matrix

Access Pattern Latency Req. Config Overhead
Real-time (ms) <10ms Replication 3.0x
Interactive (10-100ms) <100ms (6,4) EC 1.5x%
Batch (seconds) <10s (10,6) EC 1.67x
Archive (minutes) <600s (20,16) EC 1.25x

LRC Solution: Add local parity chunks that enable repair from fewer chunks.
Example LRC(12,8,4):

e 8 data chunks in 2 groups of 4
e 2 local parity chunks (1 per group)
e 2 global parity chunks

e Repair bandwidth: 4 chunks instead of 8 (50% reduction)

Traditional Reed- Solg[a%ﬁlly Repairable Code
oo Jnle), [SBIH

Repair: 4 chunks

[y

Repair: 3 chunks (local)

Figure 6: LRC vs Traditional Reed-Solomon repair

Benefits:

e 2-4x reduction in repair bandwidth
e Faster single-failure recovery

e Lower network traffic during rebuilds

e Used in Azure Storage and Facebook 4

6.2 Adaptive Erasure Coding

Machine Learning Integration:
e Workload analysis: Automatic tier selection based on access patterns
e Predictive maintenance: Failure prediction for proactive repair
e Dynamic tuning: Parameter adjustment based on system load

e Cost optimization: Multi-dimensional optimization algorithms

7 Economic Analysis

7.1 Total Cost of Ownership
Key Insights:

Erasure Coding in Distributed Storage Systems

Table 7: TCO breakdown by storage tier (relative costs)

Cost Component Hot Warm Cold Archive
Storage Hardware 100 60 25 15
Performance Premium 50 30 10)
Management Overhead 20 15 35 50
Network Bandwidth 30 20 10 5
Total Cost/TB 200 125 80 75

e Hot tier: Performance premium justifies 3x replication cost
e Cold tier: Storage savings outweigh performance penalty

e Archive: Maximum efficiency for rarely accessed data

7.2 Break-Even Analysis

Rule of Thumb: Erasure coding becomes cost-effective when:
e Access frequency < 1 per day
e Storage cost > 60% of total TCO
e Performance SLA allows >50ms latency

e Data size > 1GB per object

8 Implementation Checklist
8.1 Phase 1: Planning

[0 Analyze workload patterns and access frequencies
Define performance and durability requirements
Model storage costs vs. performance trade-offs
Assess network topology and bandwidth constraints

Identify appropriate failure domains

0O Oo o o -

Select target (n,k) configurations

%
)

Phase 2: Implementation

Choose erasure coding library (Intel ISA-L recommended)
Implement chunk placement algorithms

Set up monitoring and alerting systems

Create automated repair procedures

Test failure scenarios thoroughly

O 0o oo o o

Validate performance benchmarks

10

Erasure Coding in Distributed Storage Systems

8.3 Phase 3: Operations

[0 Monitor repair bandwidth and recovery times
[0 Track storage efficiency metrics

[0 Optimize placement policies based on usage
[0 Regular testing of failure recovery procedures
[0 Capacity planning for data growth

[0 Performance tuning and optimization

9 Future Directions

9.1 Emerging Research Areas

Next-Generation Codes:
e Quantum-resistant codes: Post-quantum cryptography integration
e Streaming codes: Real-time encoding for live data
e Regenerating codes: Optimal repair bandwidth minimization
e Polar codes: Alternative to Reed-Solomon for specific applications
Technology Integration:
e Edge computing: Low-bandwidth optimized codes
e 5G networks: Ultra-low latency requirements
e Computational storage: Near-data processing

e Blockchain integration: Decentralized storage systems

11

Erasure Coding in Distributed Storage Systems

10 Decision Framework

10.1 Quick Decision Matrix

Should I Use Erasure Coding?
YES, if:

e Data accessed less than daily

e Storage cost is primary concern
e Can tolerate 10-100ms latency
e Large objects (>100MB)

e Archival or backup use case

NO, if:

Real-time or interactive applications

Database primary storage

Frequent small updates

e Sub-10ms latency requirements

Small objects (<1MB)

11 Conclusion
11.1 Key Takeaways
1. Storage Efficiency Champion: 50-70% savings over replication
2. Performance Trade-off: 3-25x slower operations
3. Strategic Application: Perfect for cold data, problematic for hot data
4. Tiered Architecture: Combine replication (hot) + EC (cold) for optimal results

5. Industry Proven: Used by all major cloud providers for appropriate workloads

11.2 Strategic Recommendations

Table 8: Final recommendations by use case

Use Case Strategy Configuration
Production databases Replication 3 copies

Application logs Hybrid Replication — (6,4) EC
Data backups Heavy EC (14,10)

Compliance archives ~ Maximum EC (20,16)

Content delivery Mixed Hot: replication, Cold: EC
Scientific datasets Tiered EC (6,4) — (14,10)

12

Erasure Coding in Distributed Storage Systems

11.3 The Bottom Line

Erasure coding is transformative technology for the right use cases.

It enables massive storage savings while maintaining high durability, but only when applied
strategically. The key to success is understanding the fundamental trade-off between storage
efficiency and performance, then architecting systems that leverage erasure coding’s strengths
while avoiding its weaknesses.

v Advantages X Disadvantages
e 50-70% storage sav-
ings e 3-25x slower reads
e Configurable fault e Write amplification
tolerance e High CPU overhead
e Mathematical guar- | vs | ® Complex recovery
antees " e Network amplifica-
e Geographic distribu- tion
tion e Operational com-
e Industry proven plexity

e Scales with growth

Strategic Application: Use for
cold storage, avoid for hot data

Figure 7: Erasure coding trade-offs summary

For modern distributed storage systems, the optimal approach is tiered storage that uses
replication for hot data requiring fast access, and erasure coding for cold data where storage
efficiency matters more than performance. This hybrid strategy maximizes both cost savings
and system performance.

Remember: Erasure coding doesn’t replace replication—it complements it in a well-designed
storage hierarchy.

13

	Understanding (n,k) Parameters
	Core Concept
	Example: (6,4) Configuration
	Common Configurations

	Mathematical Foundations
	Reed-Solomon Codes
	Matrix Representation
	Finite Field Arithmetic

	The Performance Problem
	Why NOT Primary Storage?
	Read Performance Penalty
	Write Amplification Nightmare
	Comprehensive Performance Impact

	Real-World Impact Examples
	Database Query Scenario
	High-Traffic Application

	Where Erasure Coding Excels
	The Tiered Storage Solution
	Object Storage Success Stories
	Amazon S3
	Google Cloud Storage

	Database Applications
	Apache Cassandra
	Hadoop HDFS-EC

	Implementation Considerations
	Hardware Acceleration
	Network Topology Optimization
	Configuration Selection Guidelines

	Advanced Techniques
	Locally Repairable Codes (LRC)
	Adaptive Erasure Coding

	Economic Analysis
	Total Cost of Ownership
	Break-Even Analysis

	Implementation Checklist
	Phase 1: Planning
	Phase 2: Implementation
	Phase 3: Operations

	Future Directions
	Emerging Research Areas

	Decision Framework
	Quick Decision Matrix

	Conclusion
	Key Takeaways
	Strategic Recommendations
	The Bottom Line

