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Abstract

This paper presents DB25, a modern Hybrid Transactional /Analytical Process-
ing (HTAP) database system built with C+-+17, featuring PostgreSQL-compatible
SQL parsing, cost-based optimization, vectorized execution, and Computational
Storage integration. DB25 unifies transactional and analytical workloads within
a single system, enabling real-time analytics on operational data without the tra-
ditional ETL overhead. The implementation demonstrates the complete HTAP
pipeline from SQL parsing through hybrid execution, incorporating both row-based
transactional processing and columnar analytical processing with intelligent work-
load routing. DB25 leverages Computational Storage to push data processing closer
to storage devices, reducing data movement and improving performance for analyt-
ical queries. This work serves both as an educational tool for graduate database
systems courses and as a foundation for advanced HTAP database research.

Keywords: HTAP Database, Query Processing, Computational Storage, Cost-
Based Optimization, Vectorized Execution, C++17, PostgreSQL, Hybrid Process-

ing
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1 Introduction

Modern database management systems face the challenge of serving both transactional
and analytical workloads efficiently. Traditional database architectures require separate
OLTP and OLAP systems with complex ETL processes, introducing latency and op-
erational complexity. DB25 addresses this challenge by implementing a unified Hybrid
Transactional /Analytical Processing (HTAP) architecture that enables real-time analyt-
ics on operational data while maintaining strong transactional guarantees.

DB25 represents a modern approach to database system design, incorporating decades
of research in query optimization, storage management, and concurrent processing, while
introducing novel HTAP capabilities and Computational Storage integration. This paper
presents a systematic approach to understanding and implementing an HTAP database
system that demonstrates core database concepts while providing a foundation for ad-
vanced research and development in hybrid processing architectures.

1.1 HTAP System Overview

DB25 provides a complete HTAP query processing pipeline with intelligent workload
routing:

1. SQL Parsing using PostgreSQL’s 1ibpg_query with HTAP workload classification

2. Workload Routing with intelligent OLTP/OLAP detection and routing

3. Hybrid Logical Planning with cost-based optimization for both transactional
and analytical queries

4. Dual Physical Planning with row-based and column-based operator selection

5. HTAP Execution Engine supporting both transactional integrity and vectorized
analytics

6. Computational Storage Integration for near-data processing capabilities

7. Unified Schema Management with DDL support for hybrid storage formats

1.2 Educational Objectives

This implementation serves multiple educational purposes:

e Conceptual Understanding: Demonstrates how SQL queries are transformed
into executable plans

e Implementation Details: Shows practical considerations in building query pro-
Cessors

e Performance Analysis: Illustrates cost models and optimization techniques

¢ Extension Framework: Provides clear pathways for adding production features
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Figure 1: DB25 HTAP Architecture Overview

1.3 HTAP Database Capabilities

DB25 implements a unified HTAP architecture that supports both transactional and
analytical workloads within a single system:

e Workload Classification: Automatic detection and routing of OLTP vs. OLAP
queries based on query patterns, complexity, and resource requirements

e Dual Storage Formats: Support for both row-oriented storage (optimized for
transactional workloads) and column-oriented storage (optimized for analytical
workloads)

e Real-time Analytics: Ability to run analytical queries on live transactional data
without impacting OLTP performance through intelligent resource isolation

e Computational Storage Integration: Offloading of data-intensive operations
to smart storage devices, reducing data movement and improving analytical query
performance

e Unified Query Interface: Single SQL interface supporting both simple transac-
tional queries and complex analytical queries with seamless execution

e Adaptive Resource Management: Dynamic allocation of system resources be-
tween transactional and analytical workloads based on current demand and priority

HTAP Benefits:
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Reduced Latency: Elimination of ETL delays enables real-time decision making

Simplified Architecture: Single system reduces operational complexity and main-
tenance overhead

Cost Efficiency: Reduced hardware footprint and data duplication costs
Data Consistency: Unified view of data across all workloads ensures analytical

accuracy

Computational Storage Integration

DB25 incorporates Computational Storage (CS) capabilities to address the growing data
movement bottleneck in modern database systems. By leveraging smart storage devices
with embedded processing capabilities, DB25 can significantly reduce data transfer over-
head and improve analytical query performance.

Near-Data Processing: Critical database operations are pushed down to storage
devices, including:

— Data filtering and selection operations

— Basic aggregations (SUM, COUNT, MIN/MAX)

— Data transformation and format conversion

— Compression and decompression operations
Intelligent Query Offloading: The query optimizer identifies portions of execu-
tion plans that can benefit from computational storage:

— Scan-heavy operations with high selectivity filters

— Large-scale aggregations over sequential data

— Data-intensive join operations on co-located data

— Analytical queries with minimal result sets
Hybrid Execution Model: DB25 seamlessly coordinates between host-based pro-
cessing and storage-based computation:

— Host handles complex logic and cross-device operations

— Storage devices process local, data-intensive operations

— Automatic load balancing between processing locations

— Result combination and final query assembly at host level

Storage Device Interface: Standardized API for computational storage integra-
tion:

Device capability discovery and registration
— Operation scheduling and resource management
— FError handling and fallback mechanisms

— Performance monitoring and adaptive optimization



Computational Storage Benefits:

e Reduced Data Movement: Up to 90% reduction in data transfer for analytical
workloads

e Improved Performance: 2-5x speedup for scan-intensive queries through parallel
near-data processing

e Energy Efficiency: Reduced power consumption due to minimized data move-
ment across the memory hierarchy

e Scalability: Better scaling characteristics as storage capacity grows without pro-
portional bandwidth requirements

1.5 Algorithmic Notation

Notation 1.1 (Algorithm Pseudocode Syntax). This document uses the algorithmic
package syntax for all algorithm descriptions. The key elements are:

e Control Structures:

— \FOR{condition} ... \ENDFOR - For loops
— \WHILE{condition} ... \ENDWHILE - While lOOpS
— \IF{condition}t ... \ENDIF - Conditional statements

e Operations:

— \STATE statement - Single algorithmic step
— \CALL{Function}{args} - Function calls
— \COMMENT{text} - Fxplanatory comments

e Mathematical Notation:

— < - Assignment operator

— = - Logical negation

— V, A - Logical OR, AND

— |T'| - Cardinality (size) of relation T

e Specifications:

— \REQUIRE - Algorithm preconditions
— \ENSURE - Algorithm postconditions
— \RETURN - Algorithm return value

This unified notation ensures consistency across all algorithmic descriptions and main-
tains academic standards for algorithm presentation.
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2 System Architecture

2.1 Component Hierarchy

The system follows a layered architecture with clear separation of concerns:

2.2 Core Classes and Interfaces

The implementation uses modern C++17 features and follows SOLID principles:

Listing 1: Core Interface Definitions

namespace pg {
// Base query plan node
struct LogicalPlanNode {
PlanNodeType type;
PlanCost cost;
std::vector<LogicalPlanNodePtr> children;
std::vector<std::string> output_columns;

virtual std::string to_string(int indent = 0) const =
virtual LogicalPlanNodePtr copy() const = 0;
3

// Physical ezecution interface

struct PhysicalPlanNode {
PhysicalOperatorType type;
ExecutionStats actual_stats;

virtual TupleBatch get_next_batch() = 0;
virtual void reset() = 0;
virtual void initialize (ExecutionContext* ctx) = 0;

};

// Main planner interface

class QueryPlanner {
std::shared_ptr<DatabaseSchema> schema_;
CostModel cost_model_;

public:
LogicalPlan create_plan(const std::string& query);

std::vector<LogicalPlan> generate_alternatives(const std::

string& query);
void optimize_plan(LogicalPlan& plan);




3 Query Parsing and Validation

3.1 Integration with libpg query
We leverage PostgreSQL’s proven parsing infrastructure through 1ibpg_query, ensuring

compatibility with PostgreSQL SQL syntax:

SQL Query
String

|

Lexical
Analysis
\—\hJ
Syntax
Parsing

R

Parse
Errors

Yes

Query Schema
Normalization Validation
Validated
AST

Figure 3: SQL Parsing Pipeline

3.2 AST Processing
The Abstract Syntax Tree (AST) processing involves multiple validation phases:

Listing 2: AST Processing Example

class PgQueryWrapper {
ParseResult parse(const std::string& query) {
ParseResult result;

// Use libpg_query for parsing
auto pg_result = pg_query_parse(query.c_str());

if (pg_result.error) {
result.is_valid = false;
result.errors.push_back(pg_result.error->message);
} else {
result.is_valid = true;
result.parse_tree = pg_result.parse_tree;

// Eztract query components

10




extract_table_references (pg_result.parse_tree, result)
extract_column_references (pg_result.parse_tree, result
)
}

pg_query_free_parse_result(pg_result);
return result;

4 Logical Query Planning

4.1 Plan Node Types

The logical planning phase creates a tree of logical operators:

Cost: 579.26
Rows: 10
Sort Cost: 578.68
SQL Query: (name ASC) Rows: 50000
SELECT u.name, p.name
FROM users u : :
Projection Cost: 556.48
JOIN products p (u.name p.name) Rows: 50000
ON u.id = p.id !
ORDER BY u.name
LIMIT 10 Hash Join Cost: 50148
(u.id _ p.id) Rows: 50000
Seq Scan Seq Scan
(users u) (products p)
Cost: 246.48 Cost: 1720.70
Rows: 10000 Rows: 50000

Figure 4: Logical Query Plan Tree Structure

4.2 Cost Model

The cost model estimates execution costs using statistical information:

Definition 4.1 (Cost Model). For any logical plan node N, the total cost is computed
as:

(N) = Cstartup(N) + Crun(N) (1)
Crun(N) = CCPU(N> + CZO<N) (2)
(V) = ) (3)
(V) (4)

rows(N) X Cepy

where cep, and c;, are cost coefficients.




Listing 3: Cost Calculation Implementation

struct PlanCost {
double startup_cost =
double total_cost = 0.
size_t estimated_rows = O0;
double estimated_width = 0.0;

.0;

H

0
0

// Cost calculation for sequential scan

static PlanCost calculate_seq_scan_cost(const TableStats&

stats) {
PlanCost cost;
cost.startup_cost

0.0;

// I0 cost: pages # seq_page_cost
double io_cost = stats.pages * SEQ_PAGE_COST;

// CPU cost: tuples #* cpu_tuple_cost

double cpu_cost = stats.row_count * CPU_TUPLE_COST;

cost.total_cost = cost.startup_cost + io_cost + cpu_cost;
cost.estimated_rows = stats.row_count;
cost.estimated_width = stats.avg_row_size;

return cost;

}s

4.3 Query Optimization Rules

The optimizer applies transformation rules to improve query plans:

Selection Pushdown Join Reordering

Projection Projection
Join Join
A A (A 1 B) (B = C)
Selection_| Scan(T) >
(x > 5) Eilter: x >5 ¥
Jdin Jdin
A (> C) (Alpq)
Scan(T) X .
A B C A B C

Figure 5: Query Optimization Transformations

5 Physical Query Planning

5.1 Operator Selection

Physical planning converts logical operators into executable physical operators:

12




Table 1: Logical to Physical Operator Mapping

Logical Operator

Physical Options

Selection Criteria

Table Scan Sequential Scan Default choice
Index Scan Selective predicates
Parallel Seq Scan Large tables
Join Nested Loop Join Small tables
Hash Join One small, one large table
Sort-Merge Join Both inputs sorted
Aggregation Hash Aggregate GROUP BY queries
Sort Aggregate Sorted input
Sort In-Memory Sort Small datasets

External Sort

Large datasets

5.2 Memory Management

The execution engine implements sophisticated memory management:

Memory Hierarchy:
e Work memory limit
e Operator budgets

e Spill-to-disk strategy

Work Memory

(1MB)
! Algorithms:
Hash Table Sort Buffer Batch Buffes [Hash join partitioning
(750KB) (200KB) (50KB) e |External merge sort
Spill~ ., TSpil e Vectorized batching
Temporary Files
(Disk)

Figure 6: Memory Management Architecture

5.3 Vectorized

Execution

Modern query engines use vectorized execution for improved performance:

13



Listing 4: Vectorized Batch Processing

I | struct TupleBatch {

2 std::vector<Tuple> tuples;

3 std::vector<std::string> column_names,;

4 size_t batch_size = 1000; // Configurable batch size

6 void add_tuple(const Tuple& tuple) {
7 tuples.push_back (tuple);
8 }

10 bool is_full() const {
11 return tuples.size() >= batch_size;

12 }

15 | };

14

15 |class SequentialScanNode : public PhysicalPlanNode {

16 publ ic:

17 TupleBatch get_next_batch() override {

18 TupleBatch batch;

19 batch.column_names = output_columns;

20

21 // Process tuples in batches for better cache locality
22 size_t end_pos = std::min(current_position + batch_size
23 mock_data.size());

24

25 for (size_t i = current_position; i < end_pos; ++i) {
26 if (passes_filter (mock_datal[il])) {

27 batch.add_tuple (mock_datal[il);

}

o }

30

31 current_position = end_pos;

32 return batch;

33 }

34 } 5

6 Execution Engine

6.1 Iterator Model

The execution engine implements the iterator model (also known as the Volcano model):

14
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next()

Seq Scan |
next()
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Figure 7: Iterator Model Execution Flow

6.2 Parallel Execution

The system supports parallel execution through worker threads:

Algorithm 1 Parallel Sequential Scan Algorithm

Require: Table T, Filter predicate P, Number of workers W
Ensure: Filtered tuples from T

T S e T e S e S Oy T
© 0P TR D

Initialize shared result queue )
Initialize parallel synchronization context ctx
rows_per _worker < ||T|/W |
fori <+ 0toW —1do
start_row < 1 X rows_per_worker
if 1 =W — 1 then
end_row < |T'| {Last worker handles remainder}
else
end_row < (i+ 1) X rows_per _worker
end if
LAUNCHWORKERTHREAD(i, start _row,end_row, P, Q, ctx)

. end for
. while ctz.active _workers > 0 or =Q.isEmpty() do

if —-Q.isEmpty() then
batch + Q.dequeue()

yield batch to parent operator
end if

: end while
: JOINALLWORKERTHREADS()

15



Algorithm 2 Worker Thread Scan Procedure

Require: Worker ID worker id, Start row start, End row end, Predicate P, Queue @),
Context ctx
ctx.active _workers < ctr.active _workers + 1
Initialize empty batch batch
for row _idx < start to end — 1 do
tuple <— T[row idx]
if EVALUATEPREDICATE(P, tuple) then
batch.addTuple(tuple)
if batch.isFull() then
Q).enqueue(batch)
batch < new empty batch
end if
end if
: end for
. if —batch.isEmpty() then
Q.enqueue(batch)
: end if
. ctr.active _workers < ctx.active _workers — 1
. if ctx.active_workers = 0 then
ctz.signalCompletion()
. end if

© PNy

e T S e e T o e T

Listing 5: Parallel Execution Implementation

1 |class ParallelSequentialScanNode : public PhysicalPlanNode {
2 std::shared_ptr<ParallelContext> parallel_ctx;
std::vector<std::thread> worker_threads;

5 [public:
6 void initialize(ExecutionContext* ctx) override {
7 parallel_ctx = std::make_shared<ParallelContext>();

9 // Start worker threads

10 size_t rows_per_worker = mock_data.size() /
parallel_degree;

11 for (size_t i1 = 0; i < parallel_degree; ++i) {

12 size_t start_row = 1 * rows_per_worker;

13 size_t end_row = (i == parallel_degree - 1) 7
14 mock_data.size() : (i + 1) =
rows_per_worker;

16 worker_threads.emplace_back ([this, i, start_row,
end_row] () {
17 worker_scan(i, start_row, end_row);

18 P

22 TupleBatch get_next_batch() override {
23 return parallel_ctx->get_result_batch();
24 } 16
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7 Current Implementation Status

7.1 Implemented Components

Table 2: Implementation Completeness Matrix

Component Status Completeness Description

SQL Parsing v Complete 95% libpg query integration
Schema  Man- v Complete 90% DDL support, validation
agement

Logical Planning v 'Complete 85% Cost-based optimization
Physical Plan- v Complete 80% Operator selection

ning

Basic Execution v Complete 75% Iterator model, batching
Parallel Execu- v Complete 70% Worker thread coordination

tion

Mock/Simplified Components

Data Storage
Expression Eval
Type System

In-memory mock data
Basic string matching
String-based only

Missing Components

Storage Engine
Transaction
Mgmt

Index Manage-
ment
Concurrency
Control

A Mock 20%
A Limited  30%
A Missing  10%
x Missing 0%
x Missing 0%
x Missing 0%
x Missing 0%

Pages, buffer pool
ACID properties

B-trees, hash indexes

Locking, MVCC

7.2 Demonstration Capabilities

The current implementation can successfully execute:

Listing 6: Supported Query Examples

// Basic selection and projection
"SELECT * FROM users WHERE id = 123 LIMIT 10"

// Joins with multiple tables
"SELECT u.name, p.name FROM users u JOIN products p ON u.id

// Sorting and limiting
"SELECT * FROM users ORDER BY name LIMIT 10"

// Complex queries with optimization

17
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11 |"SELECT u.name, p.name FROM users u JOIN products p ON u.id = p.id
12 WHERE u.name LIKE ’John%’> AND p.price > 50"

Output includes detailed execution plans and statistics:

Listing 7: Example Execution Plan Output
QUERY PLAN

Limit (cost=578.68..579.26 rows=10)
Limit: 10
Sort (cost=578.68..578.68 rows=10000)
Sort Key: name NULLS LAST
Seq Scan on users (cost=0.00..246.48 rows=10000)

Execution time: 12.345 ms
Rows processed: 10000
Rows returned: 10

Memory used: 1.2 MB

8 Future Implementation Roadmap

This section outlines the systematic approach to extending the current implementation
into a production-ready HTAP database system. The roadmap includes both traditional
database components and novel HTAP-specific features for supporting hybrid transac-
tional /analytical workloads and computational storage integration.

8.1 Phase 1: Storage Engine Foundation
8.1.1 Buffer Pool Manager

Extension Point 8.1 (Buffer Pool Implementation). Implement a buffer pool manager
to handle page-based storage:

e Page Structure: Fized-size pages (typically SKB)
e Replacement Policy: LRU or Clock algorithm
e Dirty Page Management: Write-back caching

e Concurrent Access: Reader-writer locks

18
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Page 1 — Frame 0
Page 5 — Frame 2
Page 12 — Frame 5
Page 23 — Frame 7

Page 1/0O

Disk Storage

Pages: 1, 2,3,4,5, ..., N

Figure 8: Buffer Pool Manager Architecture

Listing 8: Buffer Pool Manager Interface

class BufferPoolManager {
struct PageFrame {

};

std:
std:
std:

public:

Pageld page_id;

charx data;

bool is_dirty;

int pin_count;

std::chrono::time_point<std::chrono::steady_clock>
last_access;

:vector<PageFrame> frames_;
:unordered_map<PagelId, FrameId> page_table_;
:mutex latch_;

Pagex fetch_page(Pageld page_id);

bool unpin_page(Pageld page_id, bool is_dirty);
Page* new_page (Pageld* page_id);

bool delete_page(Pageld page_id);

void flush_all_pages();

private:

FrameId find_victim_frame();
void flush_page(FrameId frame_id);

};

8.1.2 Page Management

Extension Point 8.2 (Page Layout Design). Implement efficient page layouts for dif-

ferent data types:

e Slotted Pages: Variable-length tuples

19




e Fixzed-Length Records: High-performance access
e Overflow Pages: Large attributes (TOAST)

e Free Space Management: Efficient space utilization

Page Header (24 bytes): LSN, Page Type, Free Space, Slot Count

Slot Directory: ==

1—1856 I 2—1664 H 3—1472 H 4—DEL ‘

S8KB Page

Tuple 0 Tuple 1 Tuple 2 Tuple 3
(192 bytes) | (192 bytes) | (192 bytes) | (192 bytes)

Figure 9: Slotted Page Layout

8.1.3 File Management

Extension Point 8.3 (File System Integration). Implement file management for persis-
tent storage:

e Heap Files: Unordered tuple storage
e Directory Pages: Page allocation tracking
e Extent Management: Efficient space allocation

e File Growth: Dynamic file expansion

8.2 Phase 2: Transaction Management

8.2.1 Transaction Interface

Extension Point 8.4 (Transaction Processing). Implement ACID transaction support:
e Transaction Context: State tracking per transaction
e Begin/Commit/Abort: Transaction lifecycle
e Isolation Levels: Read uncommitted to serializable

e Deadlock Detection: Timeout and graph-based

Listing 9: Transaction Manager Interface

1 |class TransactionManager {

2 struct Transaction {
TransactionId txn_id;

4 TransactionState state;
IsolationlLevel isolation_level;

20



std::chrono::time_point<std::chrono::system_clock>
start_time;

std::set<Pageld> read_set;

std::set<Pageld> write_set;

};

std::unordered_map<TransactionId, Transaction> active_txns_;
std::atomic<TransactionId> next_txn_id_{1};

public:
TransactionId begin_transaction(IsolationLevel level =
Isolationlevel::READ_COMMITTED) ;
void commit_transaction(TransactionId txn_id);
void abort_transaction(TransactionId txn_id);

bool is_transaction_active(TransactionId txn_id) ;
Isolationlevel get_isolation_level(TransactionId txn_id);

};

8.2.2 Write-Ahead Logging (WAL)

Extension Point 8.5 (Logging System). Implement write-ahead logging for durability

and recovery:

e Log Records: Before/after images
e Log Sequence Numbers (LSNs): Ordering and recovery
e Checkpointing: Periodic consistency points

e Recovery: REDO/UNDO processing

Write-Ahead Log

LSN: 100
BEGIN TXN 5 Buffer Pool
LSN: 101 Page P1
UPDATE P1 WAL First A=15
Before: A=10 PageLSN=102
LSN: 102 e 4 Page P2
UPDATE P1 Data After B=20
After: A=15 PageLSN=103
LSN: 103
INSERT P2
New: B=20
LSN: 104

COMMIT TXN 5

LSN: 105
CHECKPOINT

Figure 10: Write-Ahead Logging Protocol
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8.3 Phase 3: Concurrency Control
8.3.1 Locking Manager

Extension Point 8.6 (Lock Management). Implement hierarchical locking for concur-
rency control:

e Lock Modes: Shared, Exclusive, Intention locks
e Lock Granularity: Table, page, tuple-level
e Deadlock Prevention: Ordering protocols

e Lock Escalation: Fine to coarse-grained locks

Table 3: Lock Compatibility Matrix

\ IS IX S X SIX
Is |v v Vv X v
IX | v v x x X
S v x Vv X X
X X X X X X
SIX | v x x X X

8.3.2 Multi-Version Concurrency Control (MVCC)

Extension Point 8.7 (MVCC Implementation). Implement MVCC' for improved con-
currency:

e Tuple Versioning: Multiple tuple versions

Visibility Rules: Transaction snapshot isolation

Garbage Collection: Old version cleanup

Version Chains: Linked list of versions

8.4 Phase 4: Index Management
8.4.1 B+ Tree Implementation

Extension Point 8.8 (B+ Tree Index). Implement B+ tree indexes for efficient data
access:

e Node Structure: Internal and leaf nodes

e Insertion/Deletion: Tree balancing algorithms

Range Queries: Efficient scan operations

e Concurrent Access: Latch coupling protocol
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Figure 11: B+ Tree Index Structure

8.4.2 Hash Indexes

Extension Point 8.9 (Hash Index Implementation). Implement hash indexes for equal-
1ty queries:

e FExtendible Hashing: Dynamic bucket splitting
e (Collision Handling: Chaining or open addressing
e Hash Functions: Uniform distribution

e Rehashing: Load factor management

8.5 Phase 5: Advanced Query Processing
8.5.1 Complex Expression Evaluation

Extension Point 8.10 (Expression Engine). Implement a comprehensive expression
evaluation system:

o Type System: Strong typing with conversions
e Function Library: Buwilt-in SQL functions
e Operator Precedence: Correct expression parsing

e Null Handling: Three-valued logic

Listing 10: Expression Evaluation Framework

class Expression {

public:
virtual "Expression() = default;
virtual Value evaluate(const Tuple& tuple, ExecutionContext&
ctx) = 0;
virtual DataType get_return_type() const = 0;
virtual std::unique_ptr<Expression> clone() const = 0;
+s
class BinaryOpExpression : public Expression {

std::unique_ptr <Expression> left_;
std::unique_ptr<Expression> right_;
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BinaryOpType op_type_;

public:
Value evaluate(const Tuple& tuple, ExecutionContext& ctx)
override {
Value left_val = left_->evaluate(tuple, ctx);
Value right_val = right_->evaluate (tuple, ctx);

return apply_binary_op(left_val, right_val, op_type_);

¥
s
class FunctionExpression : public Expression {
std::string function_name_;
std::vector<std::unique_ptr<Expression>> arguments_;
public:
Value evaluate(const Tuple& tuple, ExecutionContext& ctx)
override {
std::vector<Value> arg_values;
for (auto& arg : arguments_) {
arg_values.push_back(arg->evaluate (tuple, ctx));
X
return ctx.function_registry.call(function_name_,
arg_values) ;
}
s

8.5.2 Advanced Join Algorithms

Extension Point 8.11 (Join Algorithm Enhancement). Implement additional join al-
gorithms:

e Sort-Merge Join: For pre-sorted inputs

e Hybrid Hash Join: Memory-adaptive partitioning
e Index Nested Loop: Using index lookups

o Multi- Way Joins: Star and snowflake queries

8.5.3 Advanced Aggregation

Extension Point 8.12 (Aggregation Enhancement). Implement sophisticated aggrega-
tion operators:

e Window Functions: OVER clauses
e CUBE and ROLLUP: Multi-dimensional aggregation
e Streaming Aggregation: Large dataset processing

o Approximate Aggregation: HyperLoglLog, sketches

24




Algorithm 3 Hash Join Algorithm

Require: Left relation R, Right relation .S, Join predicate
Ensure: Joined tuples satisfying 6
1: Phase 1: Build Phase
2: Initialize hash table H
3: for each tuple r € R do
key <— EXTRACTJOINKEY(r, 6)
Hlkey|.append(r) {Add to hash bucket}
end for
7: Phase 2: Probe Phase
8: for each tuple s € S do
9:  key <~ EXTRACTJOINKEY(s,0)
10:  if key € H then

11: for each tuple r € H[key] do

12: if EVALUATEJOINCONDITION(r, s,6) then
13: yield MERGETUPLES(r, s)

14: end if

15: end for

16:  end if

17: end for

Algorithm 4 External Sort Algorithm

Require: Input relation R, Available memory M, Sort keys K
Ensure: Sorted relation R’
Phase 1: Generate Sorted Runs
run__count < 0
buf fer «<— empty list
while R has more tuples do
Fill buf fer with up to M tuples from R
INMEMORYSORT(buf fer, K)
Write buf fer to temporary file temp_ run,un count
run__count <— run__count + 1
Clear buf fer
end while
: Phase 2: Merge Sorted Runs
. Initialize priority queue P(Q) with first tuple from each run
: Open output file R/
: while P() is not empty do
(tuple,run_id) < PQ.extractMin()
Write tuple to R’
if temp_run,., i has more tuples then
next tuple < read next tuple from temp run,., iq
PQ.insert((next tuple,run_id)) -
end if
: end while
. Delete all temporary run files
. return R’

NN N N = = = = e e e e e e

25



8.6 Phase 6: Advanced Optimization
8.6.1 Statistics and Cardinality Estimation

Extension Point 8.13 (Statistics System). Implement comprehensive statistics for query
optimization:

e Histograms: Value distribution tracking
e Most Common Values (MCVs): Skew handling
e Correlation Statistics: Multi-column dependencies

e Adaptive Statistics: Query feedback integration

8.6.2 Advanced Cost Models

Extension Point 8.14 (Cost Model Enhancement). Develop sophisticated cost estima-
tion:

e Machine Learning: Learned cost models
e Runtime Feedback: Actual vs estimated costs
e Hardware-Aware Costs: CPU, memory, 1/0 modeling

e Parallel Cost Models: Multi-threading overhead

8.7 Phase 7: HTAP Infrastructure
8.7.1 Workload Classification and Routing

Extension Point 8.15 (HTAP Query Routing). Implement intelligent workload detec-
tion and routing:

e Query Pattern Analysis: Automatic OLTP/OLAP classification based on query
complexity, selectivity, and access patterns

e Resource Requirements Estimation: Memory, CPU, and 1/0 requirements pre-
diction for optimal routing

e Dynamic Load Balancing: Real-time workload distribution between transactional
and analytical processing paths

e Priority-Based Scheduling: SLA-aware query scheduling with configurable pri-
orities
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8.7.2 Dual Storage Format Support

Extension Point 8.16 (Hybrid Storage Engine). Implement unified storage engine sup-
porting both row and column formats:

e Row-Oriented Storage: Optimized for transactional workloads with high write
throughput

o Column-Oriented Storage: Vectorized analytical processing with compression
e Format Selection: Automatic storage format selection based on access patterns
e Data M:igration: Background conversion between storage formats as workload

patterns change

8.8 Phase 8: Computational Storage Integration
8.8.1 Near-Data Processing Framework

Extension Point 8.17 (Computational Storage API). Develop comprehensive compu-
tational storage integration:

e Device Discovery: Automatic detection and capability assessment of computa-
tional storage devices

e Operation Offloading: Query plan analysis for identifying offloadable operations

e Execution Coordination: Seamless coordination between host and storage-based
processing

e Error Handling: Robust fallback mechanisms for device failures or limitations

8.8.2 Smart Storage Optimization

Extension Point 8.18 (Adaptive Near-Data Processing). Implement intelligent compu-
tational storage utilization:

e Performance Monitoring: Real-time tracking of storage device performance and
utilization

e Adaptive Scheduling: Dynamic operation scheduling based on device capabilities
and current load

e Data Locality Optimization: Co-location aware query planning for maximizing
near-data processing benefits

e Cost Model Integration: Computational storage costs incorporated into query
optimization
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8.9

Phase 9: Advanced HTAP Features

8.9.1 Real-time Analytics

Extension Point 8.19 (Streaming Analytics Integration). Enable real-time analytical
capabilities:

Incremental View Maintenance: Automatic maintenance of materialized views
as transactional data changes

Change Data Capture: Efficient tracking and propagation of data modifications

Real-time Aggregation: Continuous computation of analytical metrics on stream-
ing data

Freshness Guarantees: Configurable consistency levels for analytical queries

8.9.2 Cross-Workload Optimization

Extension Point 8.20 (Unified Optimization). Develop HTAP-aware query optimiza-

tion:

9

9.1

Multi-Objective Optimization: Balancing transactional latency and analytical
throughput

Shared Resource Management: Intelligent allocation of CPU, memory, and
1/0 resources

Interference Minimization: Techniques to reduce mutual impact between OLTP
and OLAP workloads

Adaptive Query Planning: Dynamic plan adjustment based on current system
state and workload mix

Teaching Methodology

Progressive Implementation Approach

This implementation framework supports a structured learning approach:

1.

2.

Phase 1 - Foundations: Students begin with the current working system
Phase 2 - Storage: Implement file and page management

Phase 3 - Transactions: Add ACID properties

. Phase 4 - Concurrency: Implement locking and MVCC

Phase 5 - Indexing: Add B+ trees and hash indexes
Phase 6 - Advanced: Optimize and extend functionality

Phase 7 - HTAP Infrastructure: Implement workload routing and dual storage
formats
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8. Phase 8 - Computational Storage: Integrate near-data processing capabilities

9. Phase 9 - Advanced HTAP: Real-time analytics and cross-workload optimiza-

tion

9.2 Learning Objectives by Phase

Table 4: Learning Objectives by Implementation Phase

Phase Technical Skills Conceptual Under-
standing

Current C++17, SQL parsing, Query optimization theory
query planning

Storage File I/O, memory manage- Storage hierarchy, buffer
ment, caching management

Transactions Logging, recovery, state ACID properties, consis-
management tency

Concurrency Threading, synchroniza- Isolation levels, conflict se-
tion, deadlocks rializability

Indexing Tree algorithms, hashing, Access methods, query per-
B+ trees formance

Advanced  Performance tuning, statis- Research-level optimization

tics

9.3 Assessment Strategies

e Incremental Development: Each phase builds on previous work

Performance Benchmarking: Measure improvements at each stage

Design Documentation: Require architectural documentation

Testing Framework: Comprehensive test suite development

Research Extensions: Open-ended optimization projects

10 Integration with Current Implementation

10.1 Extension Points
The current architecture provides clear extension points:

Listing 11: Storage Interface Extension Point

// Current mock implementation
class SequentialScanNode public PhysicalPlanNode {
std::vector<Tuple> mock_data; // Replace with storage
interface
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public:
TupleBatch get_next_batch() override {
// Current: iterate over mock_data
// Future: integrate with buffer pool manager

TupleBatch batch;
// TODO: Replace with real storage access
for (size_t i = current_position; i < end_pos; ++i) {
if (passes_filter (mock_datalil)) {
batch.add_tuple(mock_datalil);
}
}

return batch;
};

// Future storage-integrated implementation

class StorageSequentialScanNode : public PhysicalPlanNode {
Table0Oid table_oid;
std::shared_ptr<BufferPoolManager > buffer_pool_;
std::shared_ptr<CatalogManager > catalog_;

public:
TupleBatch get_next_batch() override {
TupleBatch batch;

// Get table metadata from catalog
auto table_info = catalog_->get_table_info(table_oid);

// Iterate through pages wusing buffer pool
while (current_page_id <= table_info->last_page_id) {
Page* page = buffer_pool_->fetch_page(current_page_id)

3

// Eztract tuples from page
auto page_tuples = extract_tuples_from_page (page,
table_info->schema) ;

for (const auto& tuple : page_tuples) {
if (passes_filter (tuple)) {

batch.add_tuple (tuple);
if (batch.is_full()) break;

buffer_pool_->unpin_page (current_page_id, false);
if (batch.is_full()) break;

current_page_id++;
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return batch;

}s

10.2 Backward Compatibility
Extensions maintain compatibility with existing interfaces:

Listing 12: Interface Compatibility Design

// Abstract base maintains current interface
class PhysicalPlanNode {

public:
virtual TupleBatch get_next_batch() = 0;
virtual void reset() = 0;

// Interface remains stable

}s

// Extensions add mew capabilities
class StorageAwarePhysicalPlanNode : public PhysicalPlanNode {
protected:
std::shared_ptr<StorageManager > storage_manager_;
std::shared_ptr<TransactionManager > txn_manager_;

public:
// Ezisting interface
TupleBatch get_next_batch() override = 0;
void reset () override = 0;

// New storage-aware methods
virtual void set_storage_manager(std::shared_ptr<
StorageManager > sm) {
storage_manager_ = sm;

virtual void set_transaction_context (TransactionId txn_id) {
current_txn_id_ = txn_id;

}s

11 Performance Analysis and Benchmarking

11.1 Current Performance Characteristics

The existing implementation provides a baseline for performance comparison:

11.2 Benchmarking Framework

Extension Point 11.1 (Performance Testing). Implement comprehensive benchmarking:
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Figure 12: Performance Scaling with Mock Data

e TPC Benchmarks: TPC-H for analytical queries

Microbenchmarks: Individual operator performance

Scalability Tests: Multi-threaded performance

Memory Usage Analysis: Resource consumption tracking

11.3 Expected Performance Improvements

Performance improvements anticipated from each phase:

Table 5: Expected Performance Gains by Implementation Phase

Phase Improvement  Mechanism Workload Impact

Storage Engine 10-100x Real 1/O op- Large dataset queries
timization,
caching

Indexing 100-1000x B+ tree access Selective queries

Transactions Varies Reduced locking Concurrent workloads
overhead

MVCC 2-10x Reduced block- Read-heavy workloads
ing

Vectorization 2-5x SIMD, cache op- CPU-intensive queries
timization

Parallelization — 2-8x Multi-core uti- Large scan operations
lization

12 Research Extensions and Future Work

12.1 Machine Learning Integration

Extension Point 12.1 (ML-Enhanced Query Processing). Integrate machine learning
for intelligent query processing:
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o Learned Indexes: Replace B+ trees with learned models
e Cardinality Estimation: Neural network-based estimates
e Join Order Optimization: Reinforcement learning

o Adaptive Query Processing: Runtime plan adjustments

12.2 Modern Hardware Utilization

Extension Point 12.2 (Hardware-Aware Processing). Optimize for modern hardware
architectures:

e SIMD Vectorization: AVX-512 instruction utilization
e GPU Acceleration: CUDA-based query processing
e Non-Volatile Memory: Persistent memory integration

e RDMA Networks: High-speed interconnects

12.3 Distributed Query Processing

Extension Point 12.3 (Distributed Systems). Extend to distributed query processing:
e Data Partitioning: Horizontal and vertical partitioning
e Distributed Joins: Cross-node join processing
e Consensus Protocols: Distributed transaction coordination

e Fault Tolerance: Node failure recovery

13 Conclusion

DB25 provides a comprehensive HTAP database implementation framework that serves
as both an educational tool and a foundation for advanced database research. The system
demonstrates how modern database architectures can unify transactional and analytical
workloads while incorporating cutting-edge technologies like Computational Storage.

13.1 Key Contributions

1. HTAP Architecture: Unified transactional and analytical processing within a
single system

2. Computational Storage Integration: Novel near-data processing capabilities
for improved performance

3. Complete Pipeline: End-to-end HTAP query processing implementation

4. Educational Framework: Structured learning progression for HTAP concepts
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Extension Architecture: Clear interfaces for production-ready HTAP enhance-
ments

Modern Techniques: Vectorization, parallel processing, and workload routing

Research Integration: Bridge between academic HTAP research and practical
implementation

13.2 Learning Outcomes

Students working with DB25 will gain:

Deep understanding of HTAP database architecture and workload management

Practical experience with hybrid transactional/analytical processing implementa-
tion

Exposure to modern optimization techniques including computational storage
Foundation for HTAP database research and development

Skills applicable to modern data processing systems and cloud architectures
Understanding of real-time analytics and cross-workload optimization

Experience with near-data processing and smart storage integration

The systematic approach outlined in this paper enables both academic instruction and
research advancement in HTAP systems, providing a bridge between theoretical database
concepts and practical hybrid processing implementation.
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