Hybrid Transactional-Analytical Processing:
Integrating SQLite OLTP with DuckDB Analytics
on Computational Storage Engines

Chiradip Mandal
Space-RF.org
San Francisco, CA, USA
{first-name } @ {first-name }.com

Abstract—This paper presents a novel architecture for Hy-
brid Transactional-Analytical Processing (HTAP) that combines
SQLite’s optimized Online Transaction Processing (OLTP) ca-
pabilities with DuckDB’s high-performance analytical engine,
utilizing custom storage layers on modern Computational Storage
Engines (CSEs). Our approach addresses the growing need
for real-time analytics on transactional data while maintaining
ACID compliance and minimizing data movement overhead. We
propose a unified architecture that leverages near-data processing
capabilities of computational storage to enable efficient data
transformation and synchronization between transactional and
analytical workloads. Experimental results demonstrate up to
26% improvement in analytical query performance while main-
taining 93 % of baseline transactional throughput with sub-second
analytical freshness guarantees.

Index Terms—HTAP, SQLite, DuckDB, Computational Stor-
age, OLTP, OLAP, Database Systems

I. INTRODUCTION

The convergence of transactional and analytical workloads
has become increasingly critical in modern data-driven appli-
cations. Traditional approaches often involve complex Extract-
Transform-Load (ETL) pipelines, data duplication, and signif-
icant latency between transaction commitment and analytical
availability. This paper explores an innovative architecture that
integrates SQLite’s proven OLTP performance with DuckDB’s
columnar analytical capabilities, orchestrated through custom
HTAP storage on computational storage engines.

A. Motivation

Modern applications require: (1) real-time analytics on fresh
transactional data, (2) elimination of data silos between OLTP
and OLAP systems, (3) reduced infrastructure complexity and
maintenance overhead, (4) efficient resource utilization across
storage and compute layers, and (5) seamless scaling from
embedded to distributed deployments.

B. Contributions

This work presents: (1) a unified HTAP architecture combin-
ing SQLite and DuckDB, (2) custom storage abstraction layer
for dual-format data management, (3) computational storage
integration for near-data processing, (4) performance optimiza-
tion strategies for mixed workloads, and (5) implementation
patterns and best practices.

II. BACKGROUND AND RELATED WORK

A. SQLite OLTP Characteristics

SQLite provides several advantages for transactional work-
loads: embedded deployment with zero-configuration, ACID
compliance with Write-Ahead Logging (WAL) mode, concur-
rent read access with single-writer semantics, mature ecosys-
tem and extensive optimization, and lightweight footprint
suitable for edge deployments.

B. DuckDB Analytical Engine

DuckDB offers compelling features for analytical process-
ing: columnar storage with vectorized execution, advanced
query optimization and pushdown capabilities, native support
for complex analytical queries, efficient handling of semi-
structured data formats, and embeddable architecture compat-
ible with SQLite deployment patterns.

C. Computational Storage Engines

Modern CSEs provide: near-data processing capabilities
reducing data movement, programmable interfaces for custom
logic execution, high-bandwidth internal storage interconnects,
power-efficient compute resources co-located with storage, and
emerging standards like SNIA Computational Storage API
[10].

III. ARCHITECTURE OVERVIEW

A. System Architecture

Our HTAP architecture consists of four primary components
as illustrated in Figure 1:

1) Transaction Layer: SQLite-based OLTP engine han-
dling concurrent transactions

2) Analytics Layer: DuckDB engine optimized for analyt-
ical queries

3) HTAP Storage Manager: Custom storage abstraction
managing dual-format data

4) Computational Storage Interface: CSE integration for
near-data processing

DuckDB OLAP

SQLite OLTP Engine B

HTAP Storage Manager
Dual Format Mgmt ¢ Change Capture * Consistency Control

Computational Storage Engine
Near-Data Processing * Format Conversion * Incremental Updates

Fig. 1: HTAP System Architecture

B. Data Flow Architecture

The system maintains two primary data representations: ’

(1) row-oriented format optimized for transactional access

patterns, and (2) columnar format optimized for analytical s
;) —> ConversionResult

query performance.
Data flows through the following stages:
1)
2)
3)

Transactional writes committed to SQLite WAL
Change capture identifies modified data

version
4)
IV. HTAP STORAGE MANAGER DESIGN
A. Dual-Format Storage Strategy
The HTAP Storage Manager implements a sophisticated

Computational storage performs incremental format con-

DuckDB analytical views updated with minimal latency 5

dual-format approach with row store for transactional work- ;

loads using SQLite format with optimized B-tree indexes,
WAL-based durability, and concurrent reader support. The col-
umn store for analytical workloads uses DuckDB-compatible
columnar format with compressed storage, vectorized process-
ing alignment, and incremental maintenance capabilities.

B. Change Data Capture (CDC)
The CDC mechanism tracks transactional changes through:

o WAL monitoring for committed transactions

o Incremental extraction of modified rows

o Metadata tracking for timestamp-based queries
o Conlflict resolution for concurrent modifications

C. Consistency Models

The system supports multiple consistency levels:

1) Strong Consistency: Provides synchronous replication
between formats with guaranteed analytical view consistency
but higher latency for transactional commits.

3) Read-Your-Writes Consistency: Ensures session-level
consistency guarantees with automatic routing to appropriate
storage layer and minimal performance impact.

V. COMPUTATIONAL STORAGE INTEGRATION
A. Near-Data Processing Benefits

Computational storage engines provide several advantages:
reduced data movement through processing adjacent to stor-
age, bandwidth optimization via internal storage bandwidth
utilization, latency reduction by eliminating host-storage round
trips, and power efficiency through specialized compute re-
sources.

B. Custom Processing Functions

The CSE implements specialized functions for format con-
version, incremental updates, and query pushdown as shown
in Algorithm 1. The following code examples demonstrate the
CSE programming interface:

—— Pseudo-code for CSE format conversion
FUNCTION convert_row_to_columnar (

input_table: RowTable,
output_table: ColumnTable,
batch_size: INTEGER

Listing 1: CSE Format Conversion Function

—— Pseudo-code for incremental synchronization
FUNCTION sync_incremental_changes (
wal_entries: WALEntries,
target_columns: ColumnStore,
timestamp: Timestamp
) —> SyncResult

Listing 2: CSE Incremental Updates Function

—— Analytical query pushdown to CSE

FUNCTION execute_analytical_pushdown (
query: AnalyticalQuery,
column_store: ColumnStore

5) —> QueryResult

2) Eventual Consistency: Offers asynchronous format con- °

version with bounded staleness guarantees, optimized for high-
throughput scenarios.

Listing 3: CSE Query Pushdown Function

C. Programming Model

The computational storage interface provides streaming
APIs for continuous data processing, batch processing for bulk
operations, event-driven execution triggered by transaction
commits, and resource management for CPU, memory, and
bandwidth allocation.

VI. IMPLEMENTATION STRATEGIES
A. Storage Layer Implementation

The implementation utilizes SQLite Virtual File System
(VES) extensions for HTAP integration and DuckDB exten-
sions for HTAP storage access.

typedef struct htap_vfs {
sqgqlite3_vfs base;
htap_storage_managerx storage_mgr;
cse_interfacex cse;

} htap_vfs;

10

11

)

3 public:

10

11

Algorithm 1 Format Conversion Algorithm

Require: Row table R, target column store C, batch size B
Ensure: Updated column store with converted data .
1: batch < () 2
2: count <0
3: for each row r in R do

4: Add r to batch 16
5 count < count + 1 1\
6: if count = B then

7: Convert batch to columnar format

8: Append to column store C'

9: batch < ()]
10: count < 0 2
11: end if '
12: end for .
13: if batch # 0 then 6
14: Convert remaining batch to columnar format /
15: Append to column store C')
16: end if
int htap_vfs_write(sglite3_filex file,

const voidx data, int amount,
sgqlite3_int64 offset) {
// Intercept writes for change capture

int result = base_write(file, data, amount,

offset);

if (result == SQLITE_OK) {
trigger_change_capture (file, data, amount,

offset);

}

return result;
Listing 4: SQLite VFS Extension for HTAP

// DuckDB extension for HTAP storage access
class HTAPStorageExtension public Extension {

void Load (DuckDB &db) override {
// Register HTAP storage functions
db.CreateFunction ("htap_sync_table",
HTAPSyncFunction: :Create())

db.CreateFunction ("htap_incremental_ load",
HTAPIncrementalFunction::
Create());
} 10
bi

Listing 5: DuckDB Extension Integration

B. Consistency Management 14

- . . - 15

Transaction coordination ensures ACID properties across
both storage formats while maintaining performance. The 17
system uses version vectors to track consistency states across
the dual-format storage.
class HTAPTransactionManager ({

TransactionID begin_transaction() {
auto txn_id = generate_transaction_id();

register_transaction (txn_id);
return txn_id;

void commit_transaction(TransactionID txn_id) {
// Commit to row store
sglite_commit (txn_id) ;

// Trigger analytical update
schedule_analytical_sync (txn_id);

// Update consistency metadata
update_consistency_vector (txn_id);

Listing 6: HTAP Transaction Manager

struct ConsistencyVector {
uint64_t transaction_id;
uint64_t analytical_version;
timestamp_t sync_timestamp;

bool is_analytically_consistent () const {
return analytical_version >= transaction_id;
}
}i

Listing 7: Version Vector Management

Let V' = (tiq, Guer, Tsync) Tepresent a consistency vector
where:

e t;4 1s the transaction identifier
e Qyer 18 the analytical version number
e Tsync 18 the synchronization timestamp

Analytical consistency is guaranteed when a,e, > t;q4.

C. Query Routing and Optimization

The intelligent query router determines optimal execution
engine based on query characteristics and freshness require-
ments.

class HTAPQueryRouter {
QueryEnginex route_query (const Queryé& query) {

if (is_analytical_query (query)) {

if (requires_fresh_data(query)) {
return create_federated_engine();

}
return get_duckdb_engine();

}

return get_sqglite_engine();

}

bool requires_fresh_data(const Query& query)
const {

auto required_freshness =
extract_freshness_requirement (query) ;

auto current_lag = get_analytical_lag();

return current_lag > required_freshness;

Listing 8: Intelligent Query Router

Let @ be a query with freshness requirement f,. and current
analytical lag [,. The routing decision is:

Federated if analytical(Q) A l, > f
Engine(Q)) = { DuckDB if analytical(Q) Al < f
SQLite if transactional(Q)

1

1

VII. PERFORMANCE OPTIMIZATION
A. Workload-Aware Optimization

The system dynamically adjusts storage formats based on
query pattern analysis, data access frequency, computational
resource availability, and storage tier characteristics.

class HTAPCacheManager {

struct CacheEntry {
data_format_t format;
access_frequency_t frequency;
timestamp_t last_access;
size_t memory_footprint;

bi

void optimize_cache_layout () {
// Analyze access patterns

auto patterns = analyze_access_patterns();

// Adjust format priorities

for (auto& pattern : patterns) {
if (pattern.is_analytical_heavy()) {
promote_columnar_format (pattern.
table_id);

} else if (pattern.
is_transactional_heavy()) {
promote_row_format (pattern.table_id)

Listing 9: HTAP Cache Manager

B. Computational Storage Optimization

Batch processing optimization groups changes by table and
operation type, processing each group with specialized kernels.
class CSEBatchProcessor {

void process_change_batch (const ChangeSeté&
changes) {
// Group changes by table and operation type

auto grouped_changes =
group_by_table_and_operation (changes) ;

// Process each group with optimized kernels
for (auto& group : grouped_changes) {
if (group.operation == INSERT) {
execute_bulk_insert_kernel (group) ;
} else if (group.operation == UPDATE) ({
execute_update_kernel (group) ;

}

Listing 10: CSE Batch Processor

Pipeline optimization implements overlapped data transfer
and computation for efficient resource utilization and reduced
end-to-end latency.

VIII. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Hardware Configuration:

o Host System: AMD EPYC 7742 (64 cores), 512GB
DDR4

TABLE I: Transaction Throughput Results

Configuration Transactions/sec | Analytical Lag
Baseline SQLite 45,000 N/A
HTAP (Eventual) 42,000 <500ms
HTAP (Strong) 38,000 <50ms

TABLE II: Analytical Query Performance

Query Type Baseline | HTAP | Improvement
Aggregation 2.3s 1.8s 22%
Join Heavy 5.7s 4.2s 26%
Window Functions 3.1s 2.4s 23%

50 I \
—=— HTAP System
—s— Traditional ETL

40

30

20

Response Time (ms)

0 | | | |
10 20 40 60 80

Transaction Load (K TPS)

100

Fig. 2: Scalability
Load

Analysis: Response Time vs Transaction

« Computational Storage: Samsung SmartSSD CSD (4TB
NVMe)
o Network: 100Gb Ethernet for distributed configurations

2) Workload Characteristics: We evaluated using TPC-
H (analytical benchmark), TPC-C (transactional benchmark),
mixed workload (70% OLTP, 30% OLAP), and streaming
analytics with continuous query processing.

B. Performance Results

Table I shows transaction throughput results, while Table II
presents analytical query performance.

Resource utilization improvements include 15% reduction
in host CPU usage, 40% reduction in DRAM bandwidth, and
60% improvement in effective storage throughput.

C. Scalability Analysis

The system demonstrates linear scalability for increasing
transaction volume (up to 100K TPS), growing analytical
query complexity, and multi-tenant workload isolation.

Figure 2 illustrates the scalability characteristics of our
HTAP system.

IX. DEPLOYMENT CONSIDERATIONS
A. Deployment Patterns

The system supports embedded deployment for single-
node applications, edge computing scenarios, and develop-
ment environments. Distributed deployment accommodates
microservices architectures, cloud-native applications, and
high-availability configurations.

B. Operational Considerations

Monitoring and observability require comprehensive met-
rics collection including transaction latency, analytical query
performance, synchronization lag, memory usage, and CPU
utilization.
class HTAPMetricsCollector {

struct Metrics {
double transaction_latency_p99;
double analytical_query_latency_p95;
double sync_lag_seconds;
size_t memory_usage_bytes;
double cpu_utilization_percent;

bi

void collect_metrics () {
auto metrics = gather_system _metrics();
publish_to_monitoring system(metrics);

ti
Listing 11: HTAP Metrics Collector

Backup and recovery implement unified backup strategy
across both formats with point-in-time recovery capabilities
and disaster recovery procedures.

X. FUTURE WORK AND EXTENSIONS
A. Advanced Features

Future enhancements include machine learning integration
for automated workload pattern recognition, predictive format
optimization, and intelligent resource allocation. Multi-engine
support will enable PostgreSQL integration for enhanced
OLTP, ClickHouse integration for time-series analytics, and
Spark integration for large-scale processing.

B. Emerging Technologies

Integration with persistent memory will utilize storage-
class memory for reduced durability overhead and enhanced
performance characteristics.

XI. CONCLUSION

This paper presents a comprehensive approach to hybrid
transactional-analytical processing through the integration of
SQLite OLTP capabilities with DuckDB analytics, orches-
trated via custom HTAP storage on computational storage
engines. Our architecture addresses key challenges in modern
data processing: unified data management through intelligent
dual-format storage, performance optimization via near-data
processing capabilities, linear scalability from embedded to
distributed deployments, and operational simplicity compared
to traditional ETL-based approaches.

The experimental results demonstrate significant improve-
ments in both transactional throughput (maintaining 93% of
baseline performance) and analytical query performance (up
to 26% improvement), while reducing overall system resource
requirements by 15-40% across different metrics. The architec-
ture provides a foundation for next-generation data processing
systems that can efficiently handle mixed workloads with sub-
second latency.

Key contributions include: (1) novel HTAP architecture
combining proven technologies, (2) custom storage abstraction
enabling dual-format efficiency, (3) computational storage
integration for near-data processing, (4) comprehensive per-
formance optimization strategies, and (5) practical implemen-
tation patterns and deployment guidelines.

This work establishes a foundation for future research
in hybrid data processing systems and provides a practical
approach for organizations seeking to modernize their data
infrastructure while maintaining performance and reliability
requirements.

REFERENCES

[11 A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots,” in Proc.
IEEE 27th Int. Conf. Data Eng., 2011, pp. 195-206.

[2] M. Grund, J. Kriiger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden, “HYRISE: A main memory hybrid storage engine,” Proc.
VLDB Endow., vol. 4, no. 2, pp. 105-116, 2010

[3] T. Rabl, M. Poess, H.-A. Jacobsen, P. O’Neil, and E. O’Neil, “Solving
big data challenges for enterprise application performance management,”
Proc. VLDB Endow., vol. 5, no. 12, pp. 1724-1735, 2012.

[4] T. Miihlbauer, W. Rodiger, R. Seilbeck, A. Kemper, and T. Neumann,
“Instant loading for main memory databases,” Proc. VLDB Endow., vol.
6, no. 14, pp. 1702-1713, 2013.

[5] A. Eldawy, J. Levandoski, and P.-A. Larson, “Trekking through siberia:
Managing cold data in a memory-optimized database,” Proc. VLDB
Endow., vol. 7, no. 11, pp. 931-942, 2014.

[6] T. Neumann, “Efficiently compiling efficient query plans for modern
hardware,” Proc. VLDB Endow., vol. 4, no. 9, pp. 539-550, 2011.

[7]1 P. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-pipelining
query execution,” in Proc. 2nd Biennial Conf. Innovative Data Syst.
Research, 2005, pp. 225-237.

[8] M. Raasveldt and H. Miihleisen, “DuckDB: An embeddable analytical
database,” in Proc. ACM SIGMOD Int. Conf. Management Data, 2019,
pp. 1981-1984.

[9] Samsung Electronics, “Computational Storage: A New Era of Data

Processing,” Samsung Whitepaper, 2020.

SNIA Computational Storage Technical Working Group, “Computa-

tional Storage Architecture and Programming Model,” SNIA Technical

Specification, 2021.

[10]

